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y = g(x) and y = g−1(x)

We now return to f(x) = x2. We know that f is not one-to-one, and thus, is not invertible.
However, if we restrict the domain of f , we can produce a new function g which is one-to-one. If
we define g(x) = x2, x ≥ 0, then we have
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y = f(x) = x2
restrict domain to x ≥ 0
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y = g(x) = x2, x ≥ 0

The graph of g passes the Horizontal Line Test. To find an inverse of g, we proceed as usual

y = g(x)
y = x2, x ≥ 0
x = y2, y ≥ 0 switch x and y
y = ±

√
x

y =
√
x since y ≥ 0
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We get g−1(x) =
√
x. At first it looks like we’ll run into the same trouble as before, but when

we check the composition, the domain restriction on g saves the day. We get
(
g−1 ◦ g

)
(x) =

g−1(g(x)) = g−1
(
x2
)

=
√
x2 = |x| = x, since x ≥ 0. Checking

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
=

g (
√
x) = (

√
x)

2
= x. Graphing6 g and g−1 on the same set of axes shows that they are reflections

about the line y = x.

y = x

y = g(x)

y = g−1(x)
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Our next example continues the theme of domain restriction.

Example 5.2.3. Graph the following functions to show they are one-to-one and find their inverses.
Check your answers analytically using function composition and graphically.

1. j(x) = x2 − 2x+ 4, x ≤ 1. 2. k(x) =
√
x+ 2− 1

Solution.

1. The function j is a restriction of the function h from Example 5.2.1. Since the domain of j
is restricted to x ≤ 1, we are selecting only the ‘left half’ of the parabola. We see that the
graph of j passes the Horizontal Line Test and thus j is invertible.
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y = j(x)

6We graphed y =
√
x in Section 1.7.
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We now use our algorithm7 to find j−1(x).

y = j(x)
y = x2 − 2x+ 4, x ≤ 1
x = y2 − 2y + 4, y ≤ 1 switch x and y
0 = y2 − 2y + 4− x

y =
2±

√
(−2)2 − 4(1)(4− x)

2(1)
quadratic formula, c = 4− x

y =
2±
√

4x− 12

2

y =
2±

√
4(x− 3)

2

y =
2± 2

√
x− 3

2

y =
2
(
1±
√
x− 3

)
2

y = 1±
√
x− 3

y = 1−
√
x− 3 since y ≤ 1.

We have j−1(x) = 1 −
√
x− 3. When we simplify

(
j−1 ◦ j

)
(x), we need to remember that

the domain of j is x ≤ 1.

(
j−1 ◦ j

)
(x) = j−1(j(x))

= j−1
(
x2 − 2x+ 4

)
, x ≤ 1

= 1−
√

(x2 − 2x+ 4)− 3

= 1−
√
x2 − 2x+ 1

= 1−
√

(x− 1)2

= 1− |x− 1|
= 1− (−(x− 1)) since x ≤ 1
= x X

Checking j ◦ j−1, we get

(
j ◦ j−1

)
(x) = j

(
j−1(x)

)
= j

(
1−
√
x− 3

)
=

(
1−
√
x− 3

)2 − 2
(
1−
√
x− 3

)
+ 4

= 1− 2
√
x− 3 +

(√
x− 3

)2 − 2 + 2
√
x− 3 + 4

= 3 + x− 3
= x X

7Here, we use the Quadratic Formula to solve for y. For ‘completeness,’ we note you can (and should!) also
consider solving for y by ‘completing’ the square.
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Using what we know from Section 1.7, we graph y = j−1(x) and y = j(x) below.

y = j(x)

y = j−1(x)

y = x
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2. We graph y = k(x) =
√
x+ 2−1 using what we learned in Section 1.7 and see k is one-to-one.
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y = k(x)

We now try to find k−1.

y = k(x)
y =

√
x+ 2− 1

x =
√
y + 2− 1 switch x and y

x+ 1 =
√
y + 2

(x+ 1)2 =
(√
y + 2

)2
x2 + 2x+ 1 = y + 2

y = x2 + 2x− 1

We have k−1(x) = x2 +2x−1. Based on our experience, we know something isn’t quite right.
We determined k−1 is a quadratic function, and we have seen several times in this section
that these are not one-to-one unless their domains are suitably restricted. Theorem 5.2 tells
us that the domain of k−1 is the range of k. From the graph of k, we see that the range
is [−1,∞), which means we restrict the domain of k−1 to x ≥ −1. We now check that this
works in our compositions.
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(
k−1 ◦ k

)
(x) = k−1(k(x))

= k−1
(√
x+ 2− 1

)
, x ≥ −2

=
(√
x+ 2− 1

)2
+ 2

(√
x+ 2− 1

)
− 1

=
(√
x+ 2

)2 − 2
√
x+ 2 + 1 + 2

√
x+ 2− 2− 1

= x+ 2− 2
= x X

and

(
k ◦ k−1

)
(x) = k

(
x2 + 2x− 1

)
x ≥ −1

=
√

(x2 + 2x− 1) + 2− 1

=
√
x2 + 2x+ 1− 1

=
√

(x+ 1)2 − 1
= |x+ 1| − 1
= x+ 1− 1 since x ≥ −1
= x X

Graphically, everything checks out as well, provided that we remember the domain restriction
on k−1 means we take the right half of the parabola.

y = k(x)

y = k−1(x)
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Our last example of the section gives an application of inverse functions.

Example 5.2.4. Recall from Section 2.1 that the price-demand equation for the PortaBoy game
system is p(x) = −1.5x + 250 for 0 ≤ x ≤ 166, where x represents the number of systems sold
weekly and p is the price per system in dollars.
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1. Explain why p is one-to-one and find a formula for p−1(x). State the restricted domain.

2. Find and interpret p−1(220).

3. Recall from Section 2.3 that the weekly profit P , in dollars, as a result of selling x systems is
given by P (x) = −1.5x2 + 170x− 150. Find and interpret

(
P ◦ p−1

)
(x).

4. Use your answer to part 3 to determine the price per PortaBoy which would yield the maxi-
mum profit. Compare with Example 2.3.3.

Solution.

1. We leave to the reader to show the graph of p(x) = −1.5x + 250, 0 ≤ x ≤ 166, is a line
segment from (0, 250) to (166, 1), and as such passes the Horizontal Line Test. Hence, p is
one-to-one. We find the expression for p−1(x) as usual and get p−1(x) = 500−2x

3 . The domain
of p−1 should match the range of p, which is [1, 250], and as such, we restrict the domain of
p−1 to 1 ≤ x ≤ 250.

2. We find p−1(220) = 500−2(220)
3 = 20. Since the function p took as inputs the weekly sales and

furnished the price per system as the output, p−1 takes the price per system and returns the
weekly sales as its output. Hence, p−1(220) = 20 means 20 systems will be sold in a week if
the price is set at $220 per system.

3. We compute
(
P ◦ p−1

)
(x) = P

(
p−1(x)

)
= P

(
500−2x

3

)
= −1.5

(
500−2x

3

)2
+170

(
500−2x

3

)
−150.

After a hefty amount of Elementary Algebra,8 we obtain
(
P ◦ p−1

)
(x) = −2

3x
2 +220x− 40450

3 .
To understand what this means, recall that the original profit function P gave us the weekly
profit as a function of the weekly sales. The function p−1 gives us the weekly sales as a
function of the price. Hence, P ◦ p−1 takes as its input a price. The function p−1 returns the
weekly sales, which in turn is fed into P to return the weekly profit. Hence,

(
P ◦ p−1

)
(x)

gives us the weekly profit (in dollars) as a function of the price per system, x, using the weekly
sales p−1(x) as the ‘middle man’.

4. We know from Section 2.3 that the graph of y =
(
P ◦ p−1

)
(x) is a parabola opening down-

wards. The maximum profit is realized at the vertex. Since we are concerned only with the
price per system, we need only find the x-coordinate of the vertex. Identifying a = −2

3 and

b = 220, we get, by the Vertex Formula, Equation 2.4, x = − b
2a = 165. Hence, weekly profit

is maximized if we set the price at $165 per system. Comparing this with our answer from
Example 2.3.3, there is a slight discrepancy to the tune of $0.50. We leave it to the reader to
balance the books appropriately.

8It is good review to actually do this!
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5.2.1 Exercises

In Exercises 1 - 20, show that the given function is one-to-one and find its inverse. Check your
answers algebraically and graphically. Verify that the range of f is the domain of f−1 and vice-versa.

1. f(x) = 6x− 2 2. f(x) = 42− x

3. f(x) =
x− 2

3
+ 4 4. f(x) = 1− 4 + 3x

5

5. f(x) =
√

3x− 1 + 5 6. f(x) = 2−
√
x− 5

7. f(x) = 3
√
x− 1− 4 8. f(x) = 1− 2

√
2x+ 5

9. f(x) = 5
√

3x− 1 10. f(x) = 3− 3
√
x− 2

11. f(x) = x2 − 10x, x ≥ 5 12. f(x) = 3(x+ 4)2 − 5, x ≤ −4

13. f(x) = x2 − 6x+ 5, x ≤ 3 14. f(x) = 4x2 + 4x+ 1, x < −1

15. f(x) =
3

4− x
16. f(x) =

x

1− 3x

17. f(x) =
2x− 1

3x+ 4
18. f(x) =

4x+ 2

3x− 6

19. f(x) =
−3x− 2

x+ 3
20. f(x) =

x− 2

2x− 1

With help from your classmates, find the inverses of the functions in Exercises 21 - 24.

21. f(x) = ax+ b, a 6= 0 22. f(x) = a
√
x− h+ k, a 6= 0, x ≥ h

23. f(x) = ax2 +bx+c where a 6= 0, x ≥ − b

2a
. 24. f(x) =

ax+ b

cx+ d
, (See Exercise 33 below.)

25. In Example 1.5.3, the price of a dOpi media player, in dollars per dOpi, is given as a function
of the weekly sales x according to the formula p(x) = 450− 15x for 0 ≤ x ≤ 30.

(a) Find p−1(x) and state its domain.

(b) Find and interpret p−1(105).

(c) In Example 1.5.3, we determined that the profit (in dollars) made from producing and
selling x dOpis per week is P (x) = −15x2 + 350x − 2000, for 0 ≤ x ≤ 30. Find(
P ◦ p−1

)
(x) and determine what price per dOpi would yield the maximum profit. What

is the maximum profit? How many dOpis need to be produced and sold to achieve the
maximum profit?
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26. Show that the Fahrenheit to Celsius conversion function found in Exercise 35 in Section 2.1
is invertible and that its inverse is the Celsius to Fahrenheit conversion function.

27. Analytically show that the function f(x) = x3 + 3x+ 1 is one-to-one. Since finding a formula
for its inverse is beyond the scope of this textbook, use Theorem 5.2 to help you compute
f−1(1), f−1(5), and f−1(−3).

28. Let f(x) = 2x
x2−1

. Using the techniques in Section 4.2, graph y = f(x). Verify that f is one-
to-one on the interval (−1, 1). Use the procedure outlined on Page 384 and your graphing
calculator to find the formula for f−1(x). Note that since f(0) = 0, it should be the case that
f−1(0) = 0. What goes wrong when you attempt to substitute x = 0 into f−1(x)? Discuss
with your classmates how this problem arose and possible remedies.

29. With the help of your classmates, explain why a function which is either strictly increasing
or strictly decreasing on its entire domain would have to be one-to-one, hence invertible.

30. If f is odd and invertible, prove that f−1 is also odd.

31. Let f and g be invertible functions. With the help of your classmates show that (f ◦ g) is
one-to-one, hence invertible, and that (f ◦ g)−1(x) = (g−1 ◦ f−1)(x).

32. What graphical feature must a function f possess for it to be its own inverse?

33. What conditions must you place on the values of a, b, c and d in Exercise 24 in order to
guarantee that the function is invertible?
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5.2.2 Answers

1. f−1(x) =
x+ 2

6
2. f−1(x) = 42− x

3. f−1(x) = 3x− 10 4. f−1(x) = −5
3x+ 1

3

5. f−1(x) = 1
3(x− 5)2 + 1

3 , x ≥ 5 6. f−1(x) = (x− 2)2 + 5, x ≤ 2

7. f−1(x) = 1
9(x+ 4)2 + 1, x ≥ −4 8. f−1(x) = 1

8(x− 1)2 − 5
2 , x ≤ 1

9. f−1(x) = 1
3x

5 + 1
3 10. f−1(x) = −(x− 3)3 + 2

11. f−1(x) = 5 +
√
x+ 25 12. f−1(x) = −

√
x+5

3 − 4

13. f−1(x) = 3−
√
x+ 4 14. f−1(x) = −

√
x+1
2 , x > 1

15. f−1(x) =
4x− 3

x
16. f−1(x) =

x

3x+ 1

17. f−1(x) =
4x+ 1

2− 3x
18. f−1(x) =

6x+ 2

3x− 4

19. f−1(x) =
−3x− 2

x+ 3
20. f−1(x) =

x− 2

2x− 1

25. (a) p−1(x) = 450−x
15 . The domain of p−1 is the range of p which is [0, 450]

(b) p−1(105) = 23. This means that if the price is set to $105 then 23 dOpis will be sold.

(c)
(
P ◦ p−1

)
(x) = − 1

15x
2 + 110

3 x − 5000, 0 ≤ x ≤ 450. The graph of y =
(
P ◦ p−1

)
(x)

is a parabola opening downwards with vertex
(
275, 125

3

)
≈ (275, 41.67). This means

that the maximum profit is a whopping $41.67 when the price per dOpi is set to $275.
At this price, we can produce and sell p−1(275) = 11.6 dOpis. Since we cannot sell
part of a system, we need to adjust the price to sell either 11 dOpis or 12 dOpis. We
find p(11) = 285 and p(12) = 270, which means we set the price per dOpi at either
$285 or $270, respectively. The profits at these prices are

(
P ◦ p−1

)
(285) = 35 and(

P ◦ p−1
)

(270) = 40, so it looks as if the maximum profit is $40 and it is made by
producing and selling 12 dOpis a week at a price of $270 per dOpi.

27. Given that f(0) = 1, we have f−1(1) = 0. Similarly f−1(5) = 1 and f−1(−3) = −1
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5.3 Other Algebraic Functions

This section serves as a watershed for functions which are combinations of polynomial, and more
generally, rational functions, with the operations of radicals. It is business of Calculus to discuss
these functions in all the detail they demand so our aim in this section is to help shore up the
requisite skills needed so that the reader can answer Calculus’s call when the time comes. We
briefly recall the definition and some of the basic properties of radicals from Intermediate Algebra.1

Definition 5.4. Let x be a real number and n a natural number.a If n is odd, the principal
nth root of x, denoted n

√
x is the unique real number satisfying ( n

√
x)
n

= x. If n is even, n
√
x is

defined similarlyb provided x ≥ 0 and n
√
x ≥ 0. The index is the number n and the radicand

is the number x. For n = 2, we write
√
x instead of 2

√
x.

aRecall this means n = 1, 2, 3, . . ..
bRecall both x = −2 and x = 2 satisfy x4 = 16, but 4

√
16 = 2, not −2.

It is worth remarking that, in light of Section 5.2, we could define f(x) = n
√
x functionally as the

inverse of g(x) = xn with the stipulation that when n is even, the domain of g is restricted to [0,∞).
From what we know about g(x) = xn from Section 3.1 along with Theorem 5.3, we can produce
the graphs of f(x) = n

√
x by reflecting the graphs of g(x) = xn across the line y = x. Below are the

graphs of y =
√
x, y = 4

√
x and y = 6

√
x. The point (0, 0) is indicated as a reference. The axes are

hidden so we can see the vertical steepening near x = 0 and the horizontal flattening as x→∞.

y =
√
x y = 4

√
x y = 6

√
x

The odd-indexed radical functions also follow a predictable trend - steepening near x = 0 and
flattening as x→ ±∞. In the exercises, you’ll have a chance to graph some basic radical functions
using the techniques presented in Section 1.7.

y = 3
√
x y = 5

√
x y = 7

√
x

We have used all of the following properties at some point in the textbook for the case n = 2 (the
square root), but we list them here in generality for completeness.

1Although we discussed imaginary numbers in Section 3.4, we restrict our attention to real numbers in this section.
See the epilogue on page 294 for more details.
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Theorem 5.6. Properties of Radicals: Let x and y be real numbers and m and n be natural
numbers. If n

√
x, n
√
y are real numbers, then

� Product Rule: n
√
xy = n

√
x n
√
y

� Powers of Radicals: n
√
xm = ( n

√
x)
m

� Quotient Rule: n

√
x

y
=

n
√
x

n
√
y

, provided y 6= 0.

� If n is odd, n
√
xn = x; if n is even, n

√
xn = |x|.

The proof of Theorem 5.6 is based on the definition of the principal roots and properties of expo-
nents. To establish the product rule, consider the following. If n is odd, then by definition n

√
xy

is the unique real number such that ( n
√
xy)n = xy. Given that

(
n
√
x n
√
y
)n

= ( n
√
x)
n (

n
√
y
)n

= xy,
it must be the case that n

√
xy = n

√
x n
√
y. If n is even, then n

√
xy is the unique non-negative real

number such that ( n
√
xy)n = xy. Also note that since n is even, n

√
x and n

√
y are also non-negative

and hence so is n
√
x n
√
y. Proceeding as above, we find that n

√
xy = n

√
x n
√
y. The quotient rule is

proved similarly and is left as an exercise. The power rule results from repeated application of the
product rule, so long as n

√
x is a real number to start with.2 The last property is an application of

the power rule when n is odd, and the occurrence of the absolute value when n is even is due to
the requirement that n

√
x ≥ 0 in Definition 5.4. For instance, 4

√
(−2)4 = 4

√
16 = 2 = | − 2|, not −2.

It’s this last property which makes compositions of roots and powers delicate. This is especially
true when we use exponential notation for radicals. Recall the following definition.

Definition 5.5. Let x be a real number, m an integera and n a natural number.

� x
1
n = n

√
x and is defined whenever n

√
x is defined.

� x
m
n = ( n

√
x)
m

= n
√
xm, whenever ( n

√
x)
m

is defined.

aRecall this means m = 0,±1,±2, . . .

The rational exponents defined in Definition 5.5 behave very similarly to the usual integer exponents

from Elementary Algebra with one critical exception. Consider the expression
(
x2/3

)3/2
. Applying

the usual laws of exponents, we’d be tempted to simplify this as
(
x2/3

)3/2
= x

2
3
· 3
2 = x1 = x.

However, if we substitute x = −1 and apply Definition 5.5, we find (−1)2/3 =
(

3
√
−1
)2

= (−1)2 = 1

so that
(
(−1)2/3

)3/2
= 13/2 =

(√
1
)3

= 13 = 1. We see in this case that
(
x2/3

)3/2 6= x. If we take

the time to rewrite
(
x2/3

)3/2
with radicals, we see

(
x2/3

)3/2
=
((

3
√
x
)2)3/2

=

(√(
3
√
x
)2)3

=
(∣∣ 3
√
x
∣∣)3 =

∣∣∣( 3
√
x
)3∣∣∣ = |x|

2Otherwise we’d run into the same paradox we did in Section 3.4.
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In the play-by-play analysis, we see that when we canceled the 2’s in multiplying 2
3 ·

3
2 , we were,

in fact, attempting to cancel a square with a square root. The fact that
√
x2 = |x| and not

simply x is the root3 of the trouble. It may amuse the reader to know that
(
x3/2

)2/3
= x, and

this verification is left as an exercise. The moral of the story is that when simplifying fractional
exponents, it’s usually best to rewrite them as radicals.4 The last major property we will state,
and leave to Calculus to prove, is that radical functions are continuous on their domains, so the
Intermediate Value Theorem, Theorem 3.1, applies. This means that if we take combinations of
radical functions with polynomial and rational functions to form what the authors consider the
algebraic functions,5 we can make sign diagrams using the procedure set forth in Section 4.2.

Steps for Constructing a Sign Diagram for an Algebraic Function

Suppose f is an algebraic function.

1. Place any values excluded from the domain of f on the number line with an ‘�’ above
them.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

Our next example reviews quite a bit of Intermediate Algebra and demonstrates some of the new
features of these graphs.

Example 5.3.1. For the following functions, state their domains and create sign diagrams. Check
your answer graphically using your calculator.

1. f(x) = 3x 3
√

2− x 2. g(x) =
√

2− 4
√
x+ 3

3. h(x) = 3

√
8x

x+ 1
4. k(x) =

2x√
x2 − 1

Solution.

1. As far as domain is concerned, f(x) has no denominators and no even roots, which means its
domain is (−∞,∞). To create the sign diagram, we find the zeros of f .

3Did you like that pun?
4In most other cases, though, rational exponents are preferred.
5As mentioned in Section 2.2, f(x) =

√
x2 = |x| so that absolute value is also considered an algebraic function.
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f(x) = 0
3x 3
√

2− x = 0
3x = 0 or 3

√
2− x = 0

x = 0 or
(

3
√

2− x
)3

= 03

x = 0 or 2− x = 0
x = 0 or x = 2

The zeros 0 and 2 divide the real number line into three test intervals. The sign diagram
and accompanying graph are below. Note that the intervals on which f is (+) correspond
to where the graph of f is above the x-axis, and where the graph of f is below the x-axis
we have that f is (−). The calculator suggests something mysterious happens near x = 2.
Zooming in shows the graph becomes nearly vertical there. You’ll have to wait until Calculus
to fully understand this phenomenon.

(−)

0

0 (+)

2

0 (−)

y = f(x) y = f(x) near x = 2.

2. In g(x) =
√

2− 4
√
x+ 3, we have two radicals both of which are even indexed. To satisfy

4
√
x+ 3, we require x+ 3 ≥ 0 or x ≥ −3. To satisfy

√
2− 4
√
x+ 3, we need 2− 4

√
x+ 3 ≥ 0.

While it may be tempting to write this as 2 ≥ 4
√
x+ 3 and take both sides to the fourth

power, there are times when this technique will produce erroneous results.6 Instead, we solve
2 − 4
√
x+ 3 ≥ 0 using a sign diagram. If we let r(x) = 2 − 4

√
x+ 3, we know x ≥ −3, so we

concern ourselves with only this portion of the number line. To find the zeros of r we set
r(x) = 0 and solve 2− 4

√
x+ 3 = 0. We get 4

√
x+ 3 = 2 so that

(
4
√
x+ 3

)4
= 24 from which

we obtain x+ 3 = 16 or x = 13. Since we raised both sides of an equation to an even power,
we need to check to see if x = 13 is an extraneous solution.7 We find x = 13 does check since
2− 4
√
x+ 3 = 2− 4

√
13 + 3 = 2− 4

√
16 = 2− 2 = 0. Below is our sign diagram for r.

−3

(+)

13

0 (−)

We find 2− 4
√
x+ 3 ≥ 0 on [−3, 13] so this is the domain of g. To find a sign diagram for g,

we look for the zeros of g. Setting g(x) = 0 is equivalent to
√

2− 4
√
x+ 3 = 0. After squaring

6For instance, −2 ≥ 4
√
x+ 3, which has no solution or −2 ≤ 4

√
x+ 3 whose solution is [−3,∞).

7Recall, this means we have produced a candidate which doesn’t satisfy the original equation. Do you remember
how raising both sides of an equation to an even power could cause this?



5.3 Other Algebraic Functions 401

both sides, we get 2 − 4
√
x+ 3 = 0, whose solution we have found to be x = 13. Since we

squared both sides, we double check and find g(13) is, in fact, 0. Our sign diagram and graph
of g are below. Since the domain of g is [−3, 13], what we have below is not just a portion
of the graph of g, but the complete graph. It is always above or on the x-axis, which verifies
our sign diagram.

−3

(+)

13

The complete graph of y = g(x).

3. The radical in h(x) is odd, so our only concern is the denominator. Setting x + 1 = 0 gives
x = −1, so our domain is (−∞,−1) ∪ (−1,∞). To find the zeros of h, we set h(x) = 0. To

solve 3

√
8x
x+1 = 0, we cube both sides to get 8x

x+1 = 0. We get 8x = 0, or x = 0. Below is

the resulting sign diagram and corresponding graph. From the graph, it appears as though
x = −1 is a vertical asymptote. Carrying out an analysis as x→ −1 as in Section 4.2 confirms
this. (We leave the details to the reader.) Near x = 0, we have a situation similar to x = 2
in the graph of f in number 1 above. Finally, it appears as if the graph of h has a horizontal
asymptote y = 2. Using techniques from Section 4.2, we find as x → ±∞, 8x

x+1 → 8. From

this, it is hardly surprising that as x→ ±∞, h(x) = 3

√
8x
x+1 ≈

3
√

8 = 2.

(+)

−1

� (−)

0

0 (+)

y = h(x)

4. To find the domain of k, we have both an even root and a denominator to concern ourselves
with. To satisfy the square root, x2 − 1 ≥ 0. Setting r(x) = x2 − 1, we find the zeros of r to
be x = ±1, and we find the sign diagram of r to be

(+)

−1

0 (−)

1

0 (+)
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We find x2 − 1 ≥ 0 for (−∞,−1] ∪ [1,∞). To keep the denominator of k(x) away from zero,
we set

√
x2 − 1 = 0. We leave it to the reader to verify the solutions are x = ±1, both of

which must be excluded from the domain. Hence, the domain of k is (−∞,−1) ∪ (1,∞). To
build the sign diagram for k, we need the zeros of k. Setting k(x) = 0 results in 2x√

x2−1
= 0.

We get 2x = 0 or x = 0. However, x = 0 isn’t in the domain of k, which means k has no zeros.
We construct our sign diagram on the domain of k below alongside the graph of k. It appears
that the graph of k has two vertical asymptotes, one at x = −1 and one at x = 1. The gap
in the graph between the asymptotes is because of the gap in the domain of k. Concerning
end behavior, there appear to be two horizontal asymptotes, y = 2 and y = −2. To see why
this is the case, we think of x→ ±∞. The radicand of the denominator x2 − 1 ≈ x2, and as
such, k(x) = 2x√

x2−1
≈ 2x√

x2
= 2x
|x| . As x→∞, we have |x| = x so k(x) ≈ 2x

x = 2. On the other

hand, as x → −∞, |x| = −x, and as such k(x) ≈ 2x
−x = −2. Finally, it appears as though

the graph of k passes the Horizontal Line Test which means k is one to one and k−1 exists.
Computing k−1 is left as an exercise.

(−)

−1

�

1

� (+)

y = k(x)

As the previous example illustrates, the graphs of general algebraic functions can have features
we’ve seen before, like vertical and horizontal asymptotes, but they can occur in new and exciting
ways. For example, k(x) = 2x√

x2−1
had two distinct horizontal asymptotes. You’ll recall that

rational functions could have at most one horizontal asymptote. Also some new characteristics like
‘unusual steepness’8 and cusps9 can appear in the graphs of arbitrary algebraic functions. Our next
example first demonstrates how we can use sign diagrams to solve nonlinear inequalities. (Don’t
panic. The technique is very similar to the ones used in Chapters 2, 3 and 4.) We then check our
answers graphically with a calculator and see some of the new graphical features of the functions
in this extended family.

Example 5.3.2. Solve the following inequalities. Check your answers graphically with a calculator.

8The proper Calculus term for this is ‘vertical tangent’, but for now we’ll be okay calling it ‘unusual steepness’.
9See page 241 for the first reference to this feature.
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1. x2/3 < x4/3 − 6 2. 3(2− x)1/3 ≤ x(2− x)−2/3

Solution.

1. To solve x2/3 < x4/3 − 6, we get 0 on one side and attempt to solve x4/3 − x2/3 − 6 > 0. We
set r(x) = x4/3 − x2/3 − 6 and note that since the denominators in the exponents are 3, they
correspond to cube roots, which means the domain of r is (−∞,∞). To find the zeros for
the sign diagram, we set r(x) = 0 and attempt to solve x4/3 − x2/3 − 6 = 0. At this point,
it may be unclear how to proceed. We could always try as a last resort converting back to
radical notation, but in this case we can take a cue from Example 3.3.4. Since there are
three terms, and the exponent on one of the variable terms, x4/3, is exactly twice that of the
other, x2/3, we have ourselves a ‘quadratic in disguise’ and we can rewrite x4/3−x2/3− 6 = 0

as
(
x2/3

)2 − x2/3 − 6 = 0. If we let u = x2/3, then in terms of u, we get u2 − u − 6 = 0.

Solving for u, we obtain u = −2 or u = 3. Replacing x2/3 back in for u, we get x2/3 = −2
or x2/3 = 3. To avoid the trouble we encountered in the discussion following Definition 5.5,
we now convert back to radical notation. By interpreting x2/3 as

3
√
x2 we have

3
√
x2 = −2

or
3
√
x2 = 3. Cubing both sides of these equations results in x2 = −8, which admits no

real solution, or x2 = 27, which gives x = ±3
√

3. We construct a sign diagram and find
x4/3 − x2/3 − 6 > 0 on

(
−∞,−3

√
3
)
∪
(
3
√

3,∞
)
. To check our answer graphically, we set

f(x) = x2/3 and g(x) = x4/3 − 6. The solution to x2/3 < x4/3 − 6 corresponds to the
inequality f(x) < g(x), which means we are looking for the x values for which the graph of
f is below the graph of g. Using the ‘Intersect’ command we confirm10 that the graphs cross
at x = ±3

√
3. We see that the graph of f is below the graph of g (the thicker curve) on(

−∞,−3
√

3
)
∪
(
3
√

3,∞
)
.

(+)

−3
√

3

0 (−)

3
√

3

0 (+)

y = f(x) and y = g(x)

As a point of interest, if we take a closer look at the graphs of f and g near x = 0 with
the axes off, we see that despite the fact they both involve cube roots, they exhibit different
behavior near x = 0. The graph of f has a sharp turn, or cusp, while g does not.11

10Or at least confirm to several decimal places
11Again, we introduced this feature on page 241 as a feature which makes the graph of a function ‘not smooth’.
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y = f(x) near x = 0 y = g(x) near x = 0

2. To solve 3(2− x)1/3 ≤ x(2− x)−2/3, we gather all the nonzero terms on one side and obtain
3(2 − x)1/3 − x(2 − x)−2/3 ≤ 0. We set r(x) = 3(2 − x)1/3 − x(2 − x)−2/3. As in number
1, the denominators of the rational exponents are odd, which means there are no domain
concerns there. However, the negative exponent on the second term indicates a denominator.
Rewriting r(x) with positive exponents, we obtain

r(x) = 3(2− x)1/3 − x

(2− x)2/3

Setting the denominator equal to zero we get (2− x)2/3 = 0, or 3
√

(2− x)2 = 0. After cubing
both sides, and subsequently taking square roots, we get 2 − x = 0, or x = 2. Hence, the
domain of r is (−∞, 2)∪ (2,∞). To find the zeros of r, we set r(x) = 0. There are two school
of thought on how to proceed and we demonstrate both.

� Factoring Approach. From r(x) = 3(2− x)1/3 − x(2− x)−2/3, we note that the quantity
(2−x) is common to both terms. When we factor out common factors, we factor out the
quantity with the smaller exponent. In this case, since −2

3 <
1
3 , we factor (2 − x)−2/3

from both quantities. While it may seem odd to do so, we need to factor (2 − x)−2/3

from (2−x)1/3, which results in subtracting the exponent −2
3 from 1

3 . We proceed using
the usual properties of exponents.12

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= (2− x)−2/3
[
3(2− x)

1
3
−(− 2

3) − x
]

= (2− x)−2/3
[
3(2− x)3/3 − x

]
= (2− x)−2/3

[
3(2− x)1 − x

]
since

3
√
u3 = ( 3

√
u)

3
= u

= (2− x)−2/3 (6− 4x)

= (2− x)−2/3 (6− 4x)

To solve r(x) = 0, we set (2− x)−2/3 (6− 4x) = 0, or 6−4x
(2−x)2/3 = 0. We have 6− 4x = 0

or x = 3
2 .

12And we exercise special care when reducing the 3
3

power to 1.
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� Common Denominator Approach. We rewrite

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= 3(2− x)1/3 − x

(2− x)2/3

=
3(2− x)1/3(2− x)2/3

(2− x)2/3
− x

(2− x)2/3
common denominator

=
3(2− x)

1
3

+ 2
3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)3/3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)1

(2− x)2/3
− x

(2− x)2/3
since

3
√
u3 = ( 3

√
u)

3
= u

=
3(2− x)− x
(2− x)2/3

=
6− 4x

(2− x)2/3

As before, when we set r(x) = 0 we obtain x = 3
2 .

We now create our sign diagram and find 3(2−x)1/3−x(2−x)−2/3 ≤ 0 on
[

3
2 , 2
)
∪ (2,∞). To

check this graphically, we set f(x) = 3(2− x)1/3 and g(x) = x(2− x)−2/3 (the thicker curve).
We confirm that the graphs intersect at x = 3

2 and the graph of f is below the graph of g for
x ≥ 3

2 , with the exception of x = 2 where it appears the graph of g has a vertical asymptote.

(+)

3
2

0 (−)

2

� (−)

y = f(x) and y = g(x)

One application of algebraic functions was given in Example 1.6.6 in Section 1.1. Our last example
is a more sophisticated application of distance.

Example 5.3.3. Carl wishes to get high speed internet service installed in his remote Sasquatch
observation post located 30 miles from Route 117. The nearest junction box is located 50 miles
downroad from the post, as indicated in the diagram below. Suppose it costs $15 per mile to run
cable along the road and $20 per mile to run cable off of the road.
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Outpost

Junction Box
xy

z

Route 117

50 miles

3
0

m
il
es

1. Express the total cost C of connecting the Junction Box to the Outpost as a function of x,
the number of miles the cable is run along Route 117 before heading off road directly towards
the Outpost. Determine a reasonable applied domain for the problem.

2. Use your calculator to graph y = C(x) on its domain. What is the minimum cost? How far
along Route 117 should the cable be run before turning off of the road?

Solution.

1. The cost is broken into two parts: the cost to run cable along Route 117 at $15 per mile, and
the cost to run it off road at $20 per mile. Since x represents the miles of cable run along
Route 117, the cost for that portion is 15x. From the diagram, we see that the number of
miles the cable is run off road is z, so the cost of that portion is 20z. Hence, the total cost is
C = 15x+ 20z. Our next goal is to determine z as a function of x. The diagram suggests we
can use the Pythagorean Theorem to get y2 + 302 = z2. But we also see x + y = 50 so that
y = 50 − x. Hence, z2 = (50 − x)2 + 900. Solving for z, we obtain z = ±

√
(50− x)2 + 900.

Since z represents a distance, we choose z =
√

(50− x)2 + 900 so that our cost as a function
of x only is given by

C(x) = 15x+ 20
√

(50− x)2 + 900

From the context of the problem, we have 0 ≤ x ≤ 50.

2. Graphing y = C(x) on a calculator and using the ‘Minimum’ feature, we find the relative
minimum (which is also the absolute minimum in this case) to two decimal places to be
(15.98, 1146.86). Here the x-coordinate tells us that in order to minimize cost, we should run
15.98 miles of cable along Route 117 and then turn off of the road and head towards the
outpost. The y-coordinate tells us that the minimum cost, in dollars, to do so is $1146.86.
The ability to stream live SasquatchCasts? Priceless.
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5.3.1 Exercises

For each function in Exercises 1 - 10 below

� Find its domain.

� Create a sign diagram.

� Use your calculator to help you sketch its graph and identify any vertical or horizontal asymp-
totes, ‘unusual steepness’ or cusps.

1. f(x) =
√

1− x2 2. f(x) =
√
x2 − 1

3. f(x) = x
√

1− x2 4. f(x) = x
√
x2 − 1

5. f(x) = 4

√
16x

x2 − 9
6. f(x) =

5x
3
√
x3 + 8

7. f(x) = x
2
3 (x− 7)

1
3 8. f(x) = x

3
2 (x− 7)

1
3

9. f(x) =
√
x(x+ 5)(x− 4) 10. f(x) = 3

√
x3 + 3x2 − 6x− 8

In Exercises 11 - 16, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
the transformations presented in Section 1.7.

11. f(x) = 3
√
x, g(x) = 3

√
x− 1− 2 12. f(x) = 3

√
x, g(x) = −2 3

√
x+ 1 + 4

13. f(x) = 4
√
x, g(x) = 4

√
x− 1− 2 14. f(x) = 4

√
x, g(x) = 3 4

√
x− 7− 1

15. f(x) = 5
√
x, g(x) = 5

√
x+ 2 + 3 16. f(x) = 8

√
x, g(x) = 8

√
−x− 2

In Exercises 17 - 35, solve the equation or inequality.

17. x+ 1 =
√

3x+ 7 18. 2x+ 1 =
√

3− 3x

19. x+
√

3x+ 10 = −2 20. 3x+
√

6− 9x = 2

21. 2x− 1 =
√
x+ 3 22. x

3
2 = 8

23. x
2
3 = 4 24.

√
x− 2 +

√
x− 5 = 3

25.
√

2x+ 1 = 3 +
√

4− x 26. 5− (4− 2x)
2
3 = 1

27. 10−
√
x− 2 ≤ 11 28. 3

√
x ≤ x
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29. 2(x− 2)−
1
3 − 2

3x(x− 2)−
4
3 ≤ 0 30. −4

3(x− 2)−
4
3 + 8

9x(x− 2)−
7
3 ≥ 0

31. 2x−
1
3 (x− 3)

1
3 + x

2
3 (x− 3)−

2
3 ≥ 0 32. 3

√
x3 + 3x2 − 6x− 8 > x+ 1

33. 1
3x

3
4 (x− 3)−

2
3 + 3

4x
− 1

4 (x− 3)
1
3 < 0

34. x−
1
3 (x− 3)−

2
3 − x−

4
3 (x− 3)−

5
3 (x2 − 3x+ 2) ≥ 0

35. 2
3(x+ 4)

3
5 (x− 2)−

1
3 + 3

5(x+ 4)−
2
5 (x− 2)

2
3 ≥ 0

36. Rework Example 5.3.3 so that the outpost is 10 miles from Route 117 and the nearest junction
box is 30 miles down the road for the post.

37. The volume V of a right cylindrical cone depends on the radius of its base r and its height h
and is given by the formula V = 1

3πr
2h. The surface area S of a right cylindrical cone also

depends on r and h according to the formula S = πr
√
r2 + h2. Suppose a cone is to have a

volume of 100 cubic centimeters.

(a) Use the formula for volume to find the height h as a function of r.

(b) Use the formula for surface area and your answer to 37a to find the surface area S as a
function of r.

(c) Use your calculator to find the values of r and h which minimize the surface area. What
is the minimum surface area? Round your answers to two decimal places.

38. The National Weather Service uses the following formula to calculate the wind chill:

W = 35.74 + 0.6215Ta − 35.75V 0.16 + 0.4275Ta V
0.16

where W is the wind chill temperature in ◦F, Ta is the air temperature in ◦F, and V is the
wind speed in miles per hour. Note that W is defined only for air temperatures at or lower
than 50◦F and wind speeds above 3 miles per hour.

(a) Suppose the air temperature is 42◦ and the wind speed is 7 miles per hour. Find the
wind chill temperature. Round your answer to two decimal places.

(b) Suppose the air temperature is 37◦F and the wind chill temperature is 30◦F. Find the
wind speed. Round your answer to two decimal places.

39. As a follow-up to Exercise 38, suppose the air temperature is 28◦F.

(a) Use the formula from Exercise 38 to find an expression for the wind chill temperature
as a function of the wind speed, W (V ).

(b) Solve W (V ) = 0, round your answer to two decimal places, and interpret.

(c) Graph the function W using your calculator and check your answer to part 39b.

http://www.nws.noaa.gov/om/windchill/windchillglossary.shtml
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40. The period of a pendulum in seconds is given by

T = 2π

√
L

g

(for small displacements) where L is the length of the pendulum in meters and g = 9.8
meters per second per second is the acceleration due to gravity. My Seth-Thomas antique
schoolhouse clock needs T = 1

2 second and I can adjust the length of the pendulum via a
small dial on the bottom of the bob. At what length should I set the pendulum?

41. The Cobb-Douglas production model states that the yearly total dollar value of the production
output P in an economy is a function of labor x (the total number of hours worked in a year)
and capital y (the total dollar value of all of the stuff purchased in order to make things).
Specifically, P = axby1−b. By fixing P , we create what’s known as an ‘isoquant’ and we can
then solve for y as a function of x. Let’s assume that the Cobb-Douglas production model
for the country of Sasquatchia is P = 1.23x0.4y0.6.

(a) Let P = 300 and solve for y in terms of x. If x = 100, what is y?

(b) Graph the isoquant 300 = 1.23x0.4y0.6. What information does an ordered pair (x, y)
which makes P = 300 give you? With the help of your classmates, find several different
combinations of labor and capital all of which yield P = 300. Discuss any patterns you
may see.

42. According to Einstein’s Theory of Special Relativity, the observed mass m of an object is a
function of how fast the object is traveling. Specifically,

m(x) =
mr√

1− x2

c2

where m(0) = mr is the mass of the object at rest, x is the speed of the object and c is the
speed of light.

(a) Find the applied domain of the function.

(b) Compute m(.1c), m(.5c), m(.9c) and m(.999c).

(c) As x→ c−, what happens to m(x)?

(d) How slowly must the object be traveling so that the observed mass is no greater than
100 times its mass at rest?

43. Find the inverse of k(x) =
2x√
x2 − 1

.
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44. Suppose Fritzy the Fox, positioned at a point (x, y) in the first quadrant, spots Chewbacca
the Bunny at (0, 0). Chewbacca begins to run along a fence (the positive y-axis) towards his
warren. Fritzy, of course, takes chase and constantly adjusts his direction so that he is always
running directly at Chewbacca. If Chewbacca’s speed is v1 and Fritzy’s speed is v2, the path
Fritzy will take to intercept Chewbacca, provided v2 is directly proportional to, but not equal
to, v1 is modeled by

y =
1

2

(
x1+v1/v2

1 + v1/v2

− x1−v1/v2

1− v1/v2

)
+

v1v2

v2
2 − v2

1

(a) Determine the path that Fritzy will take if he runs exactly twice as fast as Chewbacca;
that is, v2 = 2v1. Use your calculator to graph this path for x ≥ 0. What is the
significance of the y-intercept of the graph?

(b) Determine the path Fritzy will take if Chewbacca runs exactly twice as fast as he does;
that is, v1 = 2v2. Use your calculator to graph this path for x > 0. Describe the behavior
of y as x→ 0+ and interpret this physically.

(c) With the help of your classmates, generalize parts (a) and (b) to two cases: v2 > v1 and
v2 < v1. We will discuss the case of v1 = v2 in Exercise 32 in Section 6.5.

45. Verify the Quotient Rule for Radicals in Theorem 5.6.

46. Show that
(
x

3
2

) 2
3

= x for all x ≥ 0.

47. Show that 3
√

2 is an irrational number by first showing that it is a zero of p(x) = x3 − 2 and
then showing p has no rational zeros. (You’ll need the Rational Zeros Theorem, Theorem 3.9,
in order to show this last part.)

48. With the help of your classmates, generalize Exercise 47 to show that n
√
c is an irrational

number for any natural numbers c ≥ 2 and n ≥ 2 provided that c 6= pn for some natural
number p.
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5.3.2 Answers

1. f(x) =
√

1− x2

Domain: [−1, 1]

−1

(+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−1 1

1

2. f(x) =
√
x2 − 1

Domain: (−∞,−1] ∪ [1,∞)

−1

(+) (+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−3 −2 −1 1 2 3

1

2

3

3. f(x) = x
√

1− x2

Domain: [−1, 1]

−1

0 (−)

0

(+)0

1

0

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−1 1

1

−1

4. f(x) = x
√
x2 − 1

Domain: (−∞,−1] ∪ [1,∞)

−1

(−) (+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
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5. f(x) = 4

√
16x

x2 − 9
Domain: (−3, 0] ∪ (3,∞)

(+)

−3

�

0

0 �

3

(+)

Vertical asymptotes: x = −3 and x = 3
Horizontal asymptote: y = 0
Unusual steepness at x = 0
No cusps

x

y

−3 −2 −1 1 2 3 4 5 6 7 8

1

2

3

4

5

6. f(x) =
5x

3
√
x3 + 8

Domain: (−∞,−2) ∪ (−2,∞)
(+)

−2

� (−)

0

0 (+)

Vertical asymptote x = −2
Horizontal asymptote y = 5
No unusual steepness or cusps

x

y

−4−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

7. f(x) = x
2
3 (x− 7)

1
3

Domain: (−∞,∞)
(−)

0

0 (−)

7

0 (+)

No vertical or horizontal asymptotes13

Unusual steepness at x = 7
Cusp at x = 0

x

y

−3−2−1 1 2 3 4 5 6 7 8 9

−4

−3

−2

−1

1

2

3

4

5

8. f(x) = x
3
2 (x− 7)

1
3

Domain: [0,∞)

0

0 (−)

7

0 (+)

No asymptotes
Unusual steepness at x = 7
No cusps

x

y

1 2 3 4 5 6 7 8

−15

−10

−5

5

10

15

20

25

13Using Calculus it can be shown that y = x− 7
3

is a slant asymptote of this graph.
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9. f(x) =
√
x(x+ 5)(x− 4)

Domain: [−5, 0] ∪ [4,∞)

−5

0 (+)

0

0

4

0 (+)

No asymptotes
Unusual steepness at x = −5, x = 0 and x = 4
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10. f(x) = 3
√
x3 + 3x2 − 6x− 8

Domain: (−∞,∞)
(−)

−4

0 (+)

−1

0 (−)

2

0 (+)

No vertical or horizontal asymptotes14

Unusual steepness at x = −4, x = −1 and
x = 2
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

6

11. g(x) = 3
√
x− 1− 2

x

y

−4

−3

−2

−1
−9 −7 −5 −3 −1 1 3 5 7 9 11

12. g(x) = −2 3
√
x+ 1 + 4

x

y

−5 −3 −1 1 3 5 7

1

2

3

4

5

6

7

13. g(x) = 4
√
x− 1− 2

x

y

−2

−1

1 3 5 7 9 11 13 15 17 19 21

14. g(x) = 3 4
√
x− 7− 1

x

y

7 8 23
−1

1

2

3

4

5

14Using Calculus it can be shown that y = x+ 1 is a slant asymptote of this graph.
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15. g(x) = 5
√
x+ 2 + 3

x

y

−34 −2 30

1

2

3

4

5

16. g(x) = 8
√
−x− 2

x

y

−40 −30 −20 −10

−2

−1

17. x = 3 18. x = 1
4 19. x = −3

20. x = −1
3 ,

2
3 21. x = 5+

√
57

8
22. x = 4

23. x = ±8 24. x = 6 25. x = 4

26. x = −2, 6 27. [2,∞) 28. [−1, 0] ∪ [1,∞)

29. (−∞, 2) ∪ (2, 3] 30. (2, 6] 31. (−∞, 0) ∪ [2, 3) ∪ (3,∞)

32. (−∞,−1) 33.
(
0, 27

13

)
34. (−∞, 0) ∪ (0, 3)

35. (−∞,−4) ∪
(
−4,−22

19

]
∪ (2,∞)

36. C(x) = 15x + 20
√

100 + (30− x)2, 0 ≤ x ≤ 30. The calculator gives the absolute minimum
at ≈ (18.66, 582.29). This means to minimize the cost, approximately 18.66 miles of cable
should be run along Route 117 before turning off the road and heading towards the outpost.
The minimum cost to run the cable is approximately $582.29.

37. (a) h(r) = 300
πr2 , r > 0.

(b) S(r) = πr
√
r2 +

(
300
πr2

)2
=
√
π2r6+90000

r , r > 0

(c) The calculator gives the absolute minimum at the point ≈ (4.07, 90.23). This means
the radius should be (approximately) 4.07 centimeters and the height should be 5.76
centimeters to give a minimum surface area of 90.23 square centimeters.

38. (a) W ≈ 37.55◦F.

(b) V ≈ 9.84 miles per hour.

39. (a) W (V ) = 53.142 − 23.78V 0.16. Since we are told in Exercise 38 that wind chill is only
effect for wind speeds of more than 3 miles per hour, we restrict the domain to V > 3.

(b) W (V ) = 0 when V ≈ 152.29. This means, according to the model, for the wind chill
temperature to be 0◦F, the wind speed needs to be 152.29 miles per hour.
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(c) The graph is below.

40. 9.8

(
1

4π

)2

≈ 0.062 meters or 6.2 centimeters

41. (a) First rewrite the model as P = 1.23x
2
5 y

3
5 . Then 300 = 1.23x

2
5 y

3
5 yields y =

(
300

1.23x
2
5

) 5
3

.

If x = 100 then y ≈ 441.93687.

42. (a) [0, c)

(b)

m(.1c) =
mr√
.99
≈ 1.005mr m(.5c) =

mr√
.75
≈ 1.155mr

m(.9c) =
mr√
.19
≈ 2.294mr m(.999c) =

mr√
.0.001999

≈ 22.366mr

(c) As x→ c−, m(x)→∞
(d) If the object is traveling no faster than approximately 0.99995 times the speed of light,

then its observed mass will be no greater than 100mr.

43. k−1(x) =
x√

x2 − 4

44. (a) y = 1
3x

3/2 −
√
x+ 2

3 . The point
(
0, 2

3

)
is when Fritzy’s path crosses Chewbacca’s path -

in other words, where Fritzy catches Chewbacca.

(b) y = 1
6x

3 + 1
2x −

2
3 . Using the techniques from Chapter 4, we find as x → 0+, y → ∞

which means, in this case, Fritzy’s pursuit never ends; he never catches Chewbacca. This
makes sense since Chewbacca has a head start and is running faster than Fritzy.

y = 1
3x

3/2 −
√
x+ 2

3 y = 1
6x

3 + 1
2x −

2
3
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Chapter 6

Exponential and Logarithmic
Functions

6.1 Introduction to Exponential and Logarithmic Functions

Of all of the functions we study in this text, exponential and logarithmic functions are possibly the
ones which impact everyday life the most.1 This section introduces us to these functions while the
rest of the chapter will more thoroughly explore their properties. Up to this point, we have dealt
with functions which involve terms like x2 or x2/3, in other words, terms of the form xp where the
base of the term, x, varies but the exponent of each term, p, remains constant. In this chapter,
we study functions of the form f(x) = bx where the base b is a constant and the exponent x is
the variable. We start our exploration of these functions with f(x) = 2x. (Apparently this is a
tradition. Every College Algebra book we have ever read starts with f(x) = 2x.) We make a table
of values, plot the points and connect the dots in a pleasing fashion.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)
x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

A few remarks about the graph of f(x) = 2x which we have constructed are in order. As x→ −∞
1Take a class in Differential Equations and you’ll see why.
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and attains values like x = −100 or x = −1000, the function f(x) = 2x takes on values like
f(−100) = 2−100 = 1

2100 or f(−1000) = 2−1000 = 1
21000 . In other words, as x→ −∞,

2x ≈ 1

very big (+)
≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the line y = 0) as a
horizontal asymptote. On the flip side, as x→∞, we find f(100) = 2100, f(1000) = 21000, and so
on, thus 2x →∞. As a result, our graph suggests the range of f is (0,∞). The graph of f passes
the Horizontal Line Test which means f is one-to-one and hence invertible. We also note that when
we ‘connected the dots in a pleasing fashion’, we have made the implicit assumption that f(x) = 2x

is continuous2 and has a domain of all real numbers. In particular, we have suggested that things
like 2

√
3 exist as real numbers. We should take a moment to discuss what something like 2

√
3 might

mean, and refer the interested reader to a solid course in Calculus for a more rigorous explanation.
The number

√
3 = 1.73205 . . . is an irrational number3 and as such, its decimal representation

neither repeats nor terminates. We can, however, approximate
√

3 by terminating decimals, and
it stands to reason4 we can use these to approximate 2

√
3. For example, if we approximate

√
3

by 1.73, we can approximate 2
√

3 ≈ 21.73 = 2
173
100 =

100
√

2173. It is not, by any means, a pleasant
number, but it is at least a number that we understand in terms of powers and roots. It also stands
to reason that better and better approximations of

√
3 yield better and better approximations of

2
√

3, so the value of 2
√

3 should be the result of this sequence of approximations.5

Suppose we wish to study the family of functions f(x) = bx. Which bases b make sense to study?
We find that we run into difficulty if b < 0. For example, if b = −2, then the function f(x) = (−2)x

has trouble, for instance, at x = 1
2 since (−2)1/2 =

√
−2 is not a real number. In general, if x

is any rational number with an even denominator, then (−2)x is not defined, so we must restrict
our attention to bases b ≥ 0. What about b = 0? The function f(x) = 0x is undefined for x ≤ 0
because we cannot divide by 0 and 00 is an indeterminant form. For x > 0, 0x = 0 so the function
f(x) = 0x is the same as the function f(x) = 0, x > 0. We know everything we can possibly know
about this function, so we exclude it from our investigations. The only other base we exclude is
b = 1, since the function f(x) = 1x = 1 is, once again, a function we have already studied. We are
now ready for our definition of exponential functions.

Definition 6.1. A function of the form f(x) = bx where b is a fixed real number, b > 0, b 6= 1
is called a base b exponential function.

We leave it to the reader to verify6 that if b > 1, then the exponential function f(x) = bx will share
the same basic shape and characteristics as f(x) = 2x. What if 0 < b < 1? Consider g(x) =

(
1
2

)x
.

We could certainly build a table of values and connect the points, or we could take a step back and

2Recall that this means there are no holes or other kinds of breaks in the graph.
3You can actually prove this by considering the polynomial p(x) = x2 − 3 and showing it has no rational zeros by

applying Theorem 3.9.
4This is where Calculus and continuity come into play.
5Want more information? Look up “convergent sequences” on the Internet.
6Meaning, graph some more examples on your own.
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note that g(x) =
(

1
2

)x
=
(
2−1
)x

= 2−x = f(−x), where f(x) = 2x. Thinking back to Section 1.7,
the graph of f(−x) is obtained from the graph of f(x) by reflecting it across the y-axis. We get

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 2−x =
(

1
2

)x
We see that the domain and range of g match that of f , namely (−∞,∞) and (0,∞), respectively.
Like f , g is also one-to-one. Whereas f is always increasing, g is always decreasing. As a result,
as x→ −∞, g(x)→∞, and on the flip side, as x→∞, g(x)→ 0+. It shouldn’t be too surprising
that for all choices of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of g.
We summarize the basic properties of exponential functions in the following theorem.7

Theorem 6.1. Properties of Exponential Functions: Suppose f(x) = bx.

� The domain of f is (−∞,∞) and the range of f is (0,∞).

� (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to the graph of f .

� f is one-to-one, continuous and smootha

� If b > 1:

– f is always increasing

– As x→ −∞, f(x)→ 0+

– As x→∞, f(x)→∞
– The graph of f resembles:

y = bx, b > 1

� If 0 < b < 1:

– f is always decreasing

– As x→ −∞, f(x)→∞
– As x→∞, f(x)→ 0+

– The graph of f resembles:

y = bx, 0 < b < 1

aRecall that this means the graph of f has no sharp turns or corners.

7The proof of which, like many things discussed in the text, requires Calculus.
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Of all of the bases for exponential functions, two occur the most often in scientific circles. The first,
base 10, is often called the common base. The second base is an irrational number, e ≈ 2.718,
called the natural base. We will more formally discuss the origins of this number in Section 6.5.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing exponential function.
The following examples give us an idea how these functions are used in the wild.

Example 6.1.1. The value of a car can be modeled by V (x) = 25
(

4
5

)x
, where x ≥ 0 is age of the

car in years and V (x) is the value in thousands of dollars.

1. Find and interpret V (0).

2. Sketch the graph of y = V (x) using transformations.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

Solution.

1. To find V (0), we replace x with 0 to obtain V (0) = 25
(

4
5

)0
= 25. Since x represents the age

of the car in years, x = 0 corresponds to the car being brand new. Since V (x) is measured
in thousands of dollars, V (0) = 25 corresponds to a value of $25,000. Putting it all together,
we interpret V (0) = 25 to mean the purchase price of the car was $25,000.

2. To graph y = 25
(

4
5

)x
, we start with the basic exponential function f(x) =

(
4
5

)x
. Since the

base b = 4
5 is between 0 and 1, the graph of y = f(x) is decreasing. We plot the y-intercept

(0, 1) and two other points,
(
−1, 5

4

)
and

(
1, 4

5

)
, and label the horizontal asymptote y = 0.

To obtain V (x) = 25
(

4
5

)x
, x ≥ 0, we multiply the output from f by 25, in other words,

V (x) = 25f(x). In accordance with Theorem 1.5, this results in a vertical stretch by a factor
of 25. We multiply all of the y values in the graph by 25 (including the y value of the
horizontal asymptote) and obtain the points

(
−1, 125

4

)
, (0, 25) and (1, 20). The horizontal

asymptote remains y = 0. Finally, we restrict the domain to [0,∞) to fit with the applied
domain given to us. We have the result below.

(0, 1)

H.A. y = 0

x

y

−3−2−1 1 2 3

2

y = f(x) =
(

4
5

)x vertical scale by a factor of 25
−−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 25

(0, 25)

H.A. y = 0

x

y

1 2 3 4 5 6

5

10

15

20

30

y = V (x) = 25f(x), x ≥ 0

3. We see from the graph of V that its horizontal asymptote is y = 0. (We leave it to reader to
verify this analytically by thinking about what happens as we take larger and larger powers
of 4

5 .) This means as the car gets older, its value diminishes to 0.
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The function in the previous example is often called a ‘decay curve’. Increasing exponential func-
tions are used to model ‘growth curves’ and we shall see several different examples of those in
Section 6.5. For now, we present another common decay curve which will serve as the basis for
further study of exponential functions. Although it may look more complicated than the previ-
ous example, it is actually just a basic exponential function which has been modified by a few
transformations from Section 1.7.

Example 6.1.2. According to Newton’s Law of Cooling8 the temperature of coffee T (in degrees
Fahrenheit) t minutes after it is served can be modeled by T (t) = 70 + 90e−0.1t.

1. Find and interpret T (0).

2. Sketch the graph of y = T (t) using transformations.

3. Find and interpret the horizontal asymptote of the graph.

Solution.

1. To find T (0), we replace every occurrence of the independent variable t with 0 to obtain
T (0) = 70 + 90e−0.1(0) = 160. This means that the coffee was served at 160◦F.

2. To graph y = T (t) using transformations, we start with the basic function, f(t) = et. As we
have already remarked, e ≈ 2.718 > 1 so the graph of f is an increasing exponential with
y-intercept (0, 1) and horizontal asymptote y = 0. The points

(
−1, e−1

)
≈ (−1, 0.37) and

(1, e) ≈ (1, 2.72) are also on the graph. Since the formula T (t) looks rather complicated, we
rewrite T (t) in the form presented in Theorem 1.7 and use that result to track the changes
to our three points and the horizontal asymptote. We have

T (t) = 70 + 90e−0.1t = 90e−0.1t + 70 = 90f(−0.1t) + 70

Multiplication of the input to f , t, by −0.1 results in a horizontal expansion by a factor of 10
as well as a reflection about the y-axis. We divide each of the x values of our points by −0.1
(which amounts to multiplying them by −10) to obtain

(
10, e−1

)
, (0, 1), and (−10, e). Since

none of these changes affected the y values, the horizontal asymptote remains y = 0. Next,
we see that the output from f is being multiplied by 90. This results in a vertical stretch
by a factor of 90. We multiply the y-coordinates by 90 to obtain

(
10, 90e−1

)
, (0, 90), and

(−10, 90e). We also multiply the y value of the horizontal asymptote y = 0 by 90, and it
remains y = 0. Finally, we add 70 to all of the y-coordinates, which shifts the graph upwards to
obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and (−10, 90e+ 70) ≈ (−10, 314.64). Adding

70 to the horizontal asymptote shifts it upwards as well to y = 70. We connect these three
points using the same shape in the same direction as in the graph of f and, last but not least,
we restrict the domain to match the applied domain [0,∞). The result is below.

8We will discuss this in greater detail in Section 6.5.

http://en.wikipedia.org/wiki/Heat_transfer#Newton.27s_law_of_cooling
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(0, 1)

H.A. y = 0

t

y

−3−2−1 1 2 3

2

3

4

5

6

7

y = f(t) = et −−−−−−−−−−−−→

H.A. y = 70

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

140

160

180

y = T (t)

3. From the graph, we see that the horizontal asymptote is y = 70. It is worth a moment or two
of our time to see how this happens analytically and to review some of the ‘number sense’
developed in Chapter 4. As t → ∞, We get T (t) = 70 + 90e−0.1t ≈ 70 + 90every big (−). Since
e > 1,

every big (−) =
1

every big (+)
≈ 1

very big (+)

≈ very small (+)

The larger t becomes, the smaller e−0.1t becomes, so the term 90e−0.1t ≈ very small (+).
Hence, T (t) ≈ 70 + very small (+) which means the graph is approaching the horizontal line
y = 70 from above. This means that as time goes by, the temperature of the coffee is cooling
to 70◦F, presumably room temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizontal Line Test. Thus the
exponential functions are invertible. We now turn our attention to these inverses, the logarithmic
functions, which are called ‘logs’ for short.

Definition 6.2. The inverse of the exponential function f(x) = bx is called the base b loga-
rithm function, and is denoted f−1(x) = logb(x) We read ‘logb(x)’ as ‘log base b of x.’

We have special notations for the common base, b = 10, and the natural base, b = e.

Definition 6.3. The common logarithm of a real number x is log10(x) and is usually written
log(x). The natural logarithm of a real number x is loge(x) and is usually written ln(x).

Since logs are defined as the inverses of exponential functions, we can use Theorems 5.2 and 5.3 to
tell us about logarithmic functions. For example, we know that the domain of a log function is the
range of an exponential function, namely (0,∞), and that the range of a log function is the domain
of an exponential function, namely (−∞,∞). Since we know the basic shapes of y = f(x) = bx for
the different cases of b, we can obtain the graph of y = f−1(x) = logb(x) by reflecting the graph of
f across the line y = x as shown below. The y-intercept (0, 1) on the graph of f corresponds to
an x-intercept of (1, 0) on the graph of f−1. The horizontal asymptotes y = 0 on the graphs of the
exponential functions become vertical asymptotes x = 0 on the log graphs.
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y = bx, b > 1
y = logb(x), b > 1

y = bx, 0 < b < 1
y = logb(x), 0 < b < 1

On a procedural level, logs undo the exponentials. Consider the function f(x) = 2x. When we
evaluate f(3) = 23 = 8, the input 3 becomes the exponent on the base 2 to produce the real
number 8. The function f−1(x) = log2(x) then takes the number 8 as its input and returns the
exponent 3 as its output. In symbols, log2(8) = 3. More generally, log2(x) is the exponent you
put on 2 to get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes the
basic properties of logarithmic functions, all of which come from the fact that they are inverses of
exponential functions.

Theorem 6.2. Properties of Logarithmic Functions: Suppose f(x) = logb(x).

� The domain of f is (0,∞) and the range of f is (−∞,∞).

� (1, 0) is on the graph of f and x = 0 is a vertical asymptote of the graph of f .

� f is one-to-one, continuous and smooth

� ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you put on b to obtain c.

� logb (bx) = x for all x and blogb(x) = x for all x > 0

� If b > 1:

– f is always increasing

– As x→ 0+, f(x)→ −∞
– As x→∞, f(x)→∞
– The graph of f resembles:

y = logb(x), b > 1

� If 0 < b < 1:

– f is always decreasing

– As x→ 0+, f(x)→∞
– As x→∞, f(x)→ −∞
– The graph of f resembles:

y = logb(x), 0 < b < 1
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As we have mentioned, Theorem 6.2 is a consequence of Theorems 5.2 and 5.3. However, it is worth
the reader’s time to understand Theorem 6.2 from an exponential perspective. For instance, we
know that the domain of g(x) = log2(x) is (0,∞). Why? Because the range of f(x) = 2x is (0,∞).
In a way, this says everything, but at the same time, it doesn’t. For example, if we try to find
log2(−1), we are trying to find the exponent we put on 2 to give us −1. In other words, we are
looking for x that satisfies 2x = −1. There is no such real number, since all powers of 2 are positive.
While what we have said is exactly the same thing as saying ‘the domain of g(x) = log2(x) is (0,∞)
because the range of f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand
the statements in Theorem 6.2 at this level instead of just merely memorizing the facts.

Example 6.1.3. Simplify the following.

1. log3(81) 2. log2

(
1

8

)
3. log√5(25) 4. ln

(
3
√
e2
)

5. log(0.001) 6. 2log2(8) 7. 117− log117(6)

Solution.

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we want to write 81 as
a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2

(
1
8

)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 = 2−3, so log2

(
1
8

)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√

5. We know 25 = 52, and

5 =
(√

5
)2

, so we have 25 =
((√

5
)2)2

=
(√

5
)4

. We get log√5(25) = 4.

4. First, recall that the notation ln
(

3
√
e2
)

means loge

(
3
√
e2
)

, so we are looking for the exponent

to put on e to obtain
3
√
e2. Rewriting

3
√
e2 = e2/3, we find ln

(
3
√
e2
)

= ln
(
e2/3

)
= 2

3 .

5. Rewriting log(0.001) as log10(0.001), we see that we need to write 0.001 as a power of 10. We
have 0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) = log

(
10−3

)
= −3.

6. We can use Theorem 6.2 directly to simplify 2log2(8) = 8. We can also understand this problem
by first finding log2(8). By definition, log2(8) is the exponent we put on 2 to get 8. Since
8 = 23, we have log2(8) = 3. We now substitute to find 2log2(8) = 23 = 8.

7. From Theorem 6.2, we know 117log117(6) = 6, but we cannot directly apply this formula to the
expression 117− log117(6). (Can you see why?) At this point, we use a property of exponents
followed by Theorem 6.2 to get9

117− log117(6) =
1

117log117(6)
=

1

6

9It is worth a moment of your time to think your way through why 117log117(6) = 6. By definition, log117(6) is the
exponent we put on 117 to get 6. What are we doing with this exponent? We are putting it on 117. By definition
we get 6. In other words, the exponential function f(x) = 117x undoes the logarithmic function g(x) = log117(x).
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Up until this point, restrictions on the domains of functions came from avoiding division by zero
and keeping negative numbers from beneath even radicals. With the introduction of logs, we now
have another restriction. Since the domain of f(x) = logb(x) is (0,∞), the argument10 of the log
must be strictly positive.

Example 6.1.4. Find the domain of the following functions. Check your answers graphically using
the calculator.

1. f(x) = 2 log(3− x)− 1 2. g(x) = ln

(
x

x− 1

)
Solution.

1. We set 3−x > 0 to obtain x < 3, or (−∞, 3). The graph from the calculator below verifies this.
Note that we could have graphed f using transformations. Taking a cue from Theorem 1.7, we
rewrite f(x) = 2 log10(−x+3)−1 and find the main function involved is y = h(x) = log10(x).
We select three points to track,

(
1
10 ,−1

)
, (1, 0) and (10, 1), along with the vertical asymptote

x = 0. Since f(x) = 2h(−x+ 3)− 1, Theorem 1.7 tells us that to obtain the destinations of
these points, we first subtract 3 from the x-coordinates (shifting the graph left 3 units), then
divide (multiply) by the x-coordinates by −1 (causing a reflection across the y-axis). These
transformations apply to the vertical asymptote x = 0 as well. Subtracting 3 gives us x = −3
as our asymptote, then multplying by −1 gives us the vertical asymptote x = 3. Next, we
multiply the y-coordinates by 2 which results in a vertical stretch by a factor of 2, then we
finish by subtracting 1 from the y-coordinates which shifts the graph down 1 unit. We leave
it to the reader to perform the indicated arithmetic on the points themselves and to verify
the graph produced by the calculator below.

2. To find the domain of g, we need to solve the inequality x
x−1 > 0. As usual, we proceed using

a sign diagram. If we define r(x) = x
x−1 , we find r is undefined at x = 1 and r(x) = 0 when

x = 0. Choosing some test values, we generate the sign diagram below.

(+)

0

0 (−)

1

� (+)

We find x
x−1 > 0 on (−∞, 0)∪ (1,∞) to get the domain of g. The graph of y = g(x) confirms

this. We can tell from the graph of g that it is not the result of Section 1.7 transformations
being applied to the graph y = ln(x), so barring a more detailed analysis using Calculus, the
calculator graph is the best we can do. One thing worthy of note, however, is the end behavior
of g. The graph suggests that as x→ ±∞, g(x)→ 0. We can verify this analytically. Using
results from Chapter 4 and continuity, we know that as x→ ±∞, x

x−1 ≈ 1. Hence, it makes

sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

10See page 55 if you’ve forgotten what this term means.
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y = f(x) = 2 log(3− x)− 1 y = g(x) = ln

(
x

x− 1

)
While logarithms have some interesting applications of their own which you’ll explore in the exer-
cises, their primary use to us will be to undo exponential functions. (This is, after all, how they
were defined.) Our last example solidifies this and reviews all of the material in the section.

Example 6.1.5. Let f(x) = 2x−1 − 3.

1. Graph f using transformations and state the domain and range of f .

2. Explain why f is invertible and find a formula for f−1(x).

3. Graph f−1 using transformations and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1

)
(x) = x for all x in the

domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about the line y = x.

Solution.

1. If we identify g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the points
(
−1, 1

2

)
, (0, 1)

and (1, 2) on the graph of g along with the horizontal asymptote y = 0 to track through
the transformations. By Theorem 1.7 we first add 1 to the x-coordinates of the points on
the graph of g (shifting g to the right 1 unit) to get

(
0, 1

2

)
, (1, 1) and (2, 2). The horizontal

asymptote remains y = 0. Next, we subtract 3 from the y-coordinates, shifting the graph
down 3 units. We get the points

(
0,−5

2

)
, (1,−2) and (2,−1) with the horizontal asymptote

now at y = −3. Connecting the dots in the order and manner as they were on the graph of
g, we get the graph below. We see that the domain of f is the same as g, namely (−∞,∞),
but that the range of f is (−3,∞).

x

y

−3−2−1 1 2 3 4

−3

−2

−1

1

2

3

4

5

6

7

y = h(x) = 2x −−−−−−−−−−−−→

x

y

−3−2−1 1 2 3 4

−2

−1

1

2

3

4

5

6

7

y = f(x) = 2x−1 − 3
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2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence invertible. To find
a formula for f−1(x), we normally set y = f(x), interchange the x and y, then proceed to
solve for y. Doing so in this situation leads us to the equation x = 2y−1 − 3. We have yet
to discuss how to solve this kind of equation, so we will attempt to find the formula for f−1

from a procedural perspective. If we break f(x) = 2x−1 − 3 into a series of steps, we find f
takes an input x and applies the steps

(a) subtract 1

(b) put as an exponent on 2

(c) subtract 3

Clearly, to undo subtracting 1, we will add 1, and similarly we undo subtracting 3 by adding
3. How do we undo the second step? The answer is we use the logarithm. By definition,
log2(x) undoes exponentiation by 2. Hence, f−1 should

(a) add 3

(b) take the logarithm base 2

(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transformations, we start with j(x) = log2(x). We
track the points

(
1
2 ,−1

)
, (1, 0) and (2, 1) on the graph of j along with the vertical asymptote

x = 0 through the transformations using Theorem 1.7. Since f−1(x) = j(x+ 3) + 1, we first
subtract 3 from each of the x values (including the vertical asymptote) to obtain

(
−5

2 ,−1
)
,

(−2, 0) and (−1, 1) with a vertical asymptote x = −3. Next, we add 1 to the y values on the
graph and get

(
−5

2 , 0
)
, (−2, 1) and (−1, 2). If you are experiencing déjà vu, there is a good

reason for it but we leave it to the reader to determine the source of this uncanny familiarity.
We obtain the graph below. The domain of f−1 is (−3,∞), which matches the range of f ,
and the range of f−1 is (−∞,∞), which matches the domain of f .

x

y

−3

−2

−1

1

2

3

4

−3−2−1 1 2 3 4 5 6 7 8

y = j(x) = log2(x) −−−−−−−−−−−−→

x

y

−3

−2

−1

1

2

3

4

−2−1 1 2 3 4 5 6 7 8

y = f−1(x) = log2(x+ 3) + 1

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x + 3) + 1 satisfy the composition
requirement for inverses. For all real numbers x,
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(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1
(
2x−1 − 3

)
= log2

([
2x−1 − 3

]
+ 3
)

+ 1

= log2

(
2x−1

)
+ 1

= (x− 1) + 1 Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have11

(
f ◦ f−1

)
(x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3

= (x+ 3)− 3 Since 2log2(u) = u for all real numbers u > 0

= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the same set of axes and
see the symmetry about the line y = x.

x

y

y = f(x) = 2x−1 − 3
y = f−1(x) = log2(x+ 3) + 1

−3 −2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2

3

4

5

6

7

8

11Pay attention - can you spot in which step below we need x > −3?
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6.1.1 Exercises

In Exercises 1 - 15, use the property: ba = c if and only if logb(c) = a from Theorem 6.2 to rewrite
the given equation in the other form. That is, rewrite the exponential equations as logarithmic
equations and rewrite the logarithmic equations as exponential equations.

1. 23 = 8 2. 5−3 = 1
125 3. 45/2 = 32

4.
(

1
3

)−2
= 9 5.

(
4
25

)−1/2
= 5

2
6. 10−3 = 0.001

7. e0 = 1 8. log5(25) = 2 9. log25(5) = 1
2

10. log3

(
1
81

)
= −4 11. log 4

3

(
3
4

)
= −1 12. log(100) = 2

13. log(0.1) = −1 14. ln(e) = 1 15. ln
(

1√
e

)
= −1

2

In Exercises 16 - 42, evaluate the expression.

16. log3(27) 17. log6(216) 18. log2(32)

19. log6

(
1
36

)
20. log8(4) 21. log36(216)

22. log 1
5
(625) 23. log 1

6
(216) 24. log36(36)

25. log
(

1
1000000

)
26. log(0.01) 27. ln

(
e3
)

28. log4(8) 29. log6(1) 30. log13

(√
13
)

31. log36

(
4
√

36
)

32. 7log7(3) 33. 36log36(216)

34. log36

(
36216

)
35. ln

(
e5
)

36. log
(

9
√

1011
)

37. log
(

3
√

105
)

38. ln
(

1√
e

)
39. log5

(
3log3(5)

)
40. log

(
eln(100)

)
41. log2

(
3− log3(2)

)
42. ln

(
426 log(1)

)
In Exercises 43 - 57, find the domain of the function.

43. f(x) = ln(x2 + 1) 44. f(x) = log7(4x+ 8)

45. f(x) = ln(4x− 20) 46. f(x) = log
(
x2 + 9x+ 18

)
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47. f(x) = log

(
x+ 2

x2 − 1

)
48. f(x) = log

(
x2 + 9x+ 18

4x− 20

)
49. f(x) = ln(7− x) + ln(x− 4) 50. f(x) = ln(4x− 20) + ln

(
x2 + 9x+ 18

)
51. f(x) = log

(
x2 + x+ 1

)
52. f(x) = 4

√
log4(x)

53. f(x) = log9(|x+ 3| − 4) 54. f(x) = ln(
√
x− 4− 3)

55. f(x) =
1

3− log5(x) 56. f(x) =

√
−1− x

log 1
2
(x)

57. f(x) = ln(−2x3 − x2 + 13x− 6)

In Exercises 58 - 63, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
transformations. Track at least three points of your choice and the horizontal asymptote through
the transformations. State the domain and range of g.

58. f(x) = 2x, g(x) = 2x − 1 59. f(x) =
(

1
3

)x
, g(x) =

(
1
3

)x−1

60. f(x) = 3x, g(x) = 3−x + 2 61. f(x) = 10x, g(x) = 10
x+1

2 − 20

62. f(x) = ex, g(x) = 8− e−x 63. f(x) = ex, g(x) = 10e−0.1x

In Exercises 64 - 69, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
transformations. Track at least three points of your choice and the vertical asymptote through the
transformations. State the domain and range of g.

64. f(x) = log2(x), g(x) = log2(x+ 1) 65. f(x) = log 1
3
(x), g(x) = log 1

3
(x) + 1

66. f(x) = log3(x), g(x) = − log3(x− 2) 67. f(x) = log(x), g(x) = 2 log(x+ 20)− 1

68. f(x) = ln(x), g(x) = − ln(8− x) 69. f(x) = ln(x), g(x) = −10 ln
(
x
10

)
70. Verify that each function in Exercises 64 - 69 is the inverse of the corresponding function in

Exercises 58 - 63. (Match up #58 and #64, and so on.)

In Exercises 71 - 74, find the inverse of the function from the ‘procedural perspective’ discussed in
Example 6.1.5 and graph the function and its inverse on the same set of axes.

71. f(x) = 3x+2 − 4 72. f(x) = log4(x− 1)

73. f(x) = −2−x + 1 74. f(x) = 5 log(x)− 2
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(Logarithmic Scales) In Exercises 75 - 77, we introduce three widely used measurement scales which
involve common logarithms: the Richter scale, the decibel scale and the pH scale. The computations
involved in all three scales are nearly identical so pay attention to the subtle differences.

75. Earthquakes are complicated events and it is not our intent to provide a complete discussion
of the science involved in them. Instead, we refer the interested reader to a solid course in Ge-
ology12 or the U.S. Geological Survey’s Earthquake Hazards Program found here and present
only a simplified version of the Richter scale. The Richter scale measures the magnitude of an
earthquake by comparing the amplitude of the seismic waves of the given earthquake to those
of a “magnitude 0 event”, which was chosen to be a seismograph reading of 0.001 millimeters
recorded on a seismometer 100 kilometers from the earthquake’s epicenter. Specifically, the
magnitude of an earthquake is given by

M(x) = log
( x

0.001

)
where x is the seismograph reading in millimeters of the earthquake recorded 100 kilometers
from the epicenter.

(a) Show that M(0.001) = 0.

(b) Compute M(80, 000).

(c) Show that an earthquake which registered 6.7 on the Richter scale had a seismograph
reading ten times larger than one which measured 5.7.

(d) Find two news stories about recent earthquakes which give their magnitudes on the
Richter scale. How many times larger was the seismograph reading of the earthquake
with larger magnitude?

76. While the decibel scale can be used in many disciplines,13 we shall restrict our attention to
its use in acoustics, specifically its use in measuring the intensity level of sound.14 The Sound
Intensity Level L (measured in decibels) of a sound intensity I (measured in watts per square
meter) is given by

L(I) = 10 log

(
I

10−12

)
.

Like the Richter scale, this scale compares I to baseline: 10−12 W
m2 is the threshold of human

hearing.

(a) Compute L(10−6).

12Rock-solid, perhaps?
13See this webpage for more information.
14As of the writing of this exercise, the Wikipedia page given here states that it may not meet the “general notability

guideline” nor does it cite any references or sources. I find this odd because it is this very usage of the decibel scale
which shows up in every College Algebra book I have read. Perhaps those other books have been wrong all along
and we’re just blindly following tradition.

http://earthquake.usgs.gov/
http://en.wikipedia.org/wiki/Richter_scale
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Sound_intensity_level
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(b) Damage to your hearing can start with short term exposure to sound levels around 115
decibels. What intensity I is needed to produce this level?

(c) Compute L(1). How does this compare with the threshold of pain which is around 140
decibels?

77. The pH of a solution is a measure of its acidity or alkalinity. Specifically, pH = − log[H+]
where [H+] is the hydrogen ion concentration in moles per liter. A solution with a pH less
than 7 is an acid, one with a pH greater than 7 is a base (alkaline) and a pH of 7 is regarded
as neutral.

(a) The hydrogen ion concentration of pure water is [H+] = 10−7. Find its pH.

(b) Find the pH of a solution with [H+] = 6.3× 10−13.

(c) The pH of gastric acid (the acid in your stomach) is about 0.7. What is the corresponding
hydrogen ion concentration?

78. Show that logb 1 = 0 and logb b = 1 for every b > 0, b 6= 1.

79. (Crazy bonus question) Without using your calculator, determine which is larger: eπ or πe.
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6.1.2 Answers

1. log2(8) = 3 2. log5

(
1

125

)
= −3 3. log4(32) = 5

2

4. log 1
3
(9) = −2 5. log 4

25

(
5
2

)
= −1

2 6. log(0.001) = −3

7. ln(1) = 0 8. 52 = 25 9. (25)
1
2 = 5

10. 3−4 = 1
81 11.

(
4
3

)−1
= 3

4
12. 102 = 100

13. 10−1 = 0.1 14. e1 = e 15. e−
1
2 = 1√

e

16. log3(27) = 3 17. log6(216) = 3 18. log2(32) = 5

19. log6

(
1
36

)
= −2 20. log8(4) = 2

3 21. log36(216) = 3
2

22. log 1
5
(625) = −4 23. log 1

6
(216) = −3 24. log36(36) = 1

25. log 1
1000000 = −6 26. log(0.01) = −2 27. ln

(
e3
)

= 3

28. log4(8) = 3
2 29. log6(1) = 0 30. log13

(√
13
)

= 1
2

31. log36

(
4
√

36
)

= 1
4 32. 7log7(3) = 3 33. 36log36(216) = 216

34. log36

(
36216

)
= 216 35. ln(e5) = 5 36. log

(
9
√

1011
)

= 11
9

37. log
(

3
√

105
)

= 5
3 38. ln

(
1√
e

)
= −1

2
39. log5

(
3log3 5

)
= 1

40. log
(
eln(100)

)
= 2 41. log2

(
3− log3(2)

)
= −1 42. ln

(
426 log(1)

)
= 0

43. (−∞,∞) 44. (−2,∞) 45. (5,∞)

46. (−∞,−6) ∪ (−3,∞) 47. (−2,−1) ∪ (1,∞) 48. (−6,−3) ∪ (5,∞)

49. (4, 7) 50. (5,∞) 51. (−∞,∞)

52. [1,∞) 53. (−∞,−7) ∪ (1,∞) 54. (13,∞)

55. (0, 125) ∪ (125,∞) 56. No domain 57. (−∞,−3) ∪
(

1
2 , 2
)
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58. Domain of g: (−∞,∞)
Range of g: (−1,∞)

x

y

−3−2−1

H.A. y = −1

1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 2x − 1

59. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

y = g(x) =
(

1
3

)x−1

60. Domain of g: (−∞,∞)
Range of g: (2,∞)

x

y

H.A. y = 2

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

10

11

y = g(x) = 3−x + 2

61. Domain of g: (−∞,∞)
Range of g: (−20,∞)

x

y

H.A. y = −20

−3−2 1 2 3−10

10

20

30

40

50

60

70

80

y = g(x) = 10
x+1
2 − 20

62. Domain of g: (−∞,∞)
Range of g: (−∞, 8)

x

y

H.A. y = 8

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 8− e−x

63. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−10 10 20 30

10

20

30

40

50

60

70

80

y = g(x) = 10e−0.1x
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64. Domain of g: (−1,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

V.A. x = −1

1

2

3

1 2 3 4 5 6 7 8

y = g(x) = log2(x+ 1)

65. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9

y = g(x) = log 1
3

(x) + 1

66. Domain of g: (2,∞)
Range of g: (−∞,∞)

y

x

V.A. x = 2

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9 10 11

y = g(x) = − log3(x− 2)

67. Domain of g: (−20,∞)
Range of g: (−∞,∞)

y

x

V.A. x = −20−3

−2

1

2

3

−10 10 20 30 40 50 60 70 80 90100

y = g(x) = 2 log(x+ 20)− 1

68. Domain of g: (−∞, 8)
Range of g:(−∞,∞)

y

x

V.A. x = 8−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8

y = g(x) = − ln(8− x)

69. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x
−10

10

20

30

10 20 30 40 50 60 70 80

y = g(x) = −10 ln
(
x
10

)
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71. f(x) = 3x+2 − 4
f−1(x) = log3(x+ 4)− 2

x

y

y = f(x) = 3x+2 − 4

y = f−1(x) = log3(x+ 4)− 2

−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

72. f(x) = log4(x− 1)
f−1(x) = 4x + 1

x

y

y = f(x) = log4(x− 1)

y = f−1(x) = 4x + 1

−2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

5

6

73. f(x) = −2−x + 1
f−1(x) = − log2(1− x)

x

y

y = f(x) = −2−x + 1
y = f−1(x) = − log2(1− x)

−2 −1 1 2

−2

−1

1

2

74. f(x) = 5 log(x)− 2

f−1(x) = 10
x+2

5

x

y

y = f(x) = 5 log(x)− 2

y = f−1(x) = 10
x+2

5

−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

75. (a) M(0.001) = log
(

0.001
0.001

)
= log(1) = 0.

(b) M(80, 000) = log
(

80,000
0.001

)
= log(80, 000, 000) ≈ 7.9.

76. (a) L(10−6) = 60 decibels.

(b) I = 10−.5 ≈ 0.316 watts per square meter.

(c) Since L(1) = 120 decibels and L(100) = 140 decibels, a sound with intensity level 140
decibels has an intensity 100 times greater than a sound with intensity level 120 decibels.

77. (a) The pH of pure water is 7.

(b) If [H+] = 6.3× 10−13 then the solution has a pH of 12.2.

(c) [H+] = 10−0.7 ≈ .1995 moles per liter.
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6.2 Properties of Logarithms

In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge role in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.

Theorem 6.3. (Inverse Properties of Exponential and Logarithmic Functions)
Let b > 0, b 6= 1.

� ba = c if and only if logb(c) = a

� logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out what it means for exponential and logarithmic functions to be one-to-one.

Theorem 6.4. (One-to-one Properties of Exponential and Logarithmic Functions)
Let f(x) = bx and g(x) = logb(x) where b > 0, b 6= 1. Then f and g are one-to-one and

� bu = bw if and only if u = w for all real numbers u and w.

� logb(u) = logb(w) if and only if u = w for all real numbers u > 0, w > 0.

We now state the algebraic properties of exponential functions which will serve as a basis for the
properties of logarithms. While these properties may look identical to the ones you learned in
Elementary and Intermediate Algebra, they apply to real number exponents, not just rational
exponents. Note that in the theorem that follows, we are interested in the properties of exponential
functions, so the base b is restricted to b > 0, b 6= 1. An added benefit of this restriction is that it

eliminates the pathologies discussed in Section 5.3 when, for example, we simplified
(
x2/3

)3/2
and

obtained |x| instead of what we had expected from the arithmetic in the exponents, x1 = x.

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let f(x) = bx be an
exponential function (b > 0, b 6= 1) and let u and w be real numbers.

� Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

� Quotient Rule: f(u− w) =
f(u)

f(w)
. In other words, bu−w =

bu

bw

� Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the properties listed in Theorem 6.5 are certainly believable based on similar properties of
integer and rational exponents, the full proofs require Calculus. To each of these properties of

http://en.wikipedia.org/wiki/Slide_rule
http://www.redorbit.com/news/space/73297/nasa_marks_35th_anniversary_of_first_moon_landing/
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exponential functions corresponds an analogous property of logarithmic functions. We list these
below in our next theorem.

Theorem 6.6. (Algebraic Properties of Logarithmic Functions) Let g(x) = logb(x) be a
logarithmic function (b > 0, b 6= 1) and let u > 0 and w > 0 be real numbers.

� Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) = logb(u) + logb(w)

� Quotient Rule: g
( u
w

)
= g(u)− g(w). In other words, logb

( u
w

)
= logb(u)− logb(w)

� Power Rule: g (uw) = wg(u). In other words, logb (uw) = w logb(u)

There are a couple of different ways to understand why Theorem 6.6 is true. Consider the product
rule: logb(uw) = logb(u) + logb(w). Let a = logb(uw), c = logb(u), and d = logb(w). Then, by
definition, ba = uw, bc = u and bd = w. Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By
the one-to-one property of bx, we have a = c + d. In other words, logb(uw) = logb(u) + logb(w).
The remaining properties are proved similarly. From a purely functional approach, we can see
the properties in Theorem 6.6 as an example of how inverse functions interchange the roles of
inputs in outputs. For instance, the Product Rule for exponential functions given in Theorem 6.5,
f(u+w) = f(u)f(w), says that adding inputs results in multiplying outputs. Hence, whatever f−1

is, it must take the products of outputs from f and return them to the sum of their respective inputs.
Since the outputs from f are the inputs to f−1 and vice-versa, we have that that f−1 must take
products of its inputs to the sum of their respective outputs. This is precisely what the Product Rule
for Logarithmic functions states in Theorem 6.6: g(uw) = g(u)+g(w). The reader is encouraged to
view the remaining properties listed in Theorem 6.6 similarly. The following examples help build
familiarity with these properties. In our first example, we are asked to ‘expand’ the logarithms.
This means that we read the properties in Theorem 6.6 from left to right and rewrite products
inside the log as sums outside the log, quotients inside the log as differences outside the log, and
powers inside the log as factors outside the log.1

Example 6.2.1. Expand the following using the properties of logarithms and simplify. Assume
when necessary that all quantities represent positive real numbers.

1. log2

(
8

x

)
2. log0.1

(
10x2

)
3. ln

(
3

ex

)2

4. log 3

√
100x2

yz5
5. log117

(
x2 − 4

)
Solution.

1. To expand log2

(
8
x

)
, we use the Quotient Rule identifying u = 8 and w = x and simplify.

1Interestingly enough, it is the exact opposite process (which we will practice later) that is most useful in Algebra,
the utility of expanding logarithms becomes apparent in Calculus.
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log2

(
8

x

)
= log2(8)− log2(x) Quotient Rule

= 3− log2(x) Since 23 = 8

= − log2(x) + 3

2. In the expression log0.1

(
10x2

)
, we have a power (the x2) and a product. In order to use the

Product Rule, the entire quantity inside the logarithm must be raised to the same exponent.
Since the exponent 2 applies only to the x, we first apply the Product Rule with u = 10 and
w = x2. Once we get the x2 by itself inside the log, we may apply the Power Rule with u = x
and w = 2 and simplify.

log0.1

(
10x2

)
= log0.1(10) + log0.1

(
x2
)

Product Rule

= log0.1(10) + 2 log0.1(x) Power Rule

= −1 + 2 log0.1(x) Since (0.1)−1 = 10

= 2 log0.1(x)− 1

3. We have a power, quotient and product occurring in ln
(

3
ex

)2
. Since the exponent 2 applies

to the entire quantity inside the logarithm, we begin with the Power Rule with u = 3
ex and

w = 2. Next, we see the Quotient Rule is applicable, with u = 3 and w = ex, so we replace
ln
(

3
ex

)
with the quantity ln(3) − ln(ex). Since ln

(
3
ex

)
is being multiplied by 2, the entire

quantity ln(3)− ln(ex) is multiplied by 2. Finally, we apply the Product Rule with u = e and
w = x, and replace ln(ex) with the quantity ln(e) + ln(x), and simplify, keeping in mind that
the natural log is log base e.

ln

(
3

ex

)2

= 2 ln

(
3

ex

)
Power Rule

= 2 [ln(3)− ln(ex)] Quotient Rule

= 2 ln(3)− 2 ln(ex)

= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule

= 2 ln(3)− 2 ln(e)− 2 ln(x)

= 2 ln(3)− 2− 2 ln(x) Since e1 = e

= −2 ln(x) + 2 ln(3)− 2

4. In Theorem 6.6, there is no mention of how to deal with radicals. However, thinking back to
Definition 5.5, we can rewrite the cube root as a 1

3 exponent. We begin by using the Power
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Rule2, and we keep in mind that the common log is log base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

= 1
3 log

(
100x2

yz5

)
Power Rule

= 1
3

[
log
(
100x2

)
− log

(
yz5
)]

Quotient Rule

= 1
3 log

(
100x2

)
− 1

3 log
(
yz5
)

= 1
3

[
log(100) + log

(
x2
)]
− 1

3

[
log(y) + log

(
z5
)]

Product Rule

= 1
3 log(100) + 1

3 log
(
x2
)
− 1

3 log(y)− 1
3 log

(
z5
)

= 1
3 log(100) + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Power Rule

= 2
3 + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Since 102 = 100

= 2
3 log(x)− 1

3 log(y)− 5
3 log(z) + 2

3

5. At first it seems as if we have no means of simplifying log117

(
x2 − 4

)
, since none of the

properties of logs addresses the issue of expanding a difference inside the logarithm. However,
we may factor x2 − 4 = (x + 2)(x − 2) thereby introducing a product which gives us license
to use the Product Rule.

log117

(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor

= log117(x+ 2) + log117(x− 2) Product Rule

A couple of remarks about Example 6.2.1 are in order. First, while not explicitly stated in the above
example, a general rule of thumb to determine which log property to apply first to a complicated
problem is ‘reverse order of operations.’ For example, if we were to substitute a number for x into
the expression log0.1

(
10x2

)
, we would first square the x, then multiply by 10. The last step is the

multiplication, which tells us the first log property to apply is the Product Rule. In a multi-step
problem, this rule can give the required guidance on which log property to apply at each step.
The reader is encouraged to look through the solutions to Example 6.2.1 to see this rule in action.
Second, while we were instructed to assume when necessary that all quantities represented positive
real numbers, the authors would be committing a sin of omission if we failed to point out that, for
instance, the functions f(x) = log117

(
x2 − 4

)
and g(x) = log117(x+2)+log117(x−2) have different

domains, and, hence, are different functions. We leave it to the reader to verify the domain of f
is (−∞,−2) ∪ (2,∞) whereas the domain of g is (2,∞). In general, when using log properties to

2At this point in the text, the reader is encouraged to carefully read through each step and think of which quantity
is playing the role of u and which is playing the role of w as we apply each property.
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expand a logarithm, we may very well be restricting the domain as we do so. One last comment
before we move to reassembling logs from their various bits and pieces. The authors are well aware
of the propensity for some students to become overexcited and invent their own properties of logs
like log117

(
x2 − 4

)
= log117

(
x2
)
− log117(4), which simply isn’t true, in general. The unwritten3

property of logarithms is that if it isn’t written in a textbook, it probably isn’t true.

Example 6.2.2. Use the properties of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1) 2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3 4. − ln(x)− 1
2

Solution. Whereas in Example 6.2.1 we read the properties in Theorem 6.6 from left to right to
expand logarithms, in this example we read them from right to left.

1. The difference of logarithms requires the Quotient Rule: log3(x−1)−log3(x+1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x) + 2 log(y)− log(z), we have both a sum and difference of logarithms.
However, before we use the product rule to combine log(x) + 2 log(y), we note that we need
to somehow deal with the coefficient 2 on log(y). This can be handled using the Power Rule.
We can then apply the Product and Quotient Rules as we move from left to right. Putting it
all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log

(
xy2

z

)
Quotient Rule

3. We can certainly get started rewriting 4 log2(x) + 3 by applying the Power Rule to 4 log2(x)
to obtain log2

(
x4
)
, but in order to use the Product Rule to handle the addition, we need to

rewrite 3 as a logarithm base 2. From Theorem 6.3, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2

(
x4
)

+ 3 Power Rule

= log2

(
x4
)

+ log2

(
23
)

Since 3 = log2

(
23
)

= log2

(
x4
)

+ log2(8)

= log2

(
8x4
)

Product Rule

3The authors relish the irony involved in writing what follows.
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4. To get started with − ln(x)− 1
2 , we rewrite − ln(x) as (−1) ln(x). We can then use the Power

Rule to obtain (−1) ln(x) = ln
(
x−1

)
. In order to use the Quotient Rule, we need to write 1

2

as a natural logarithm. Theorem 6.3 gives us 1
2 = ln

(
e1/2

)
= ln (

√
e). We have

− ln(x)− 1
2 = (−1) ln(x)− 1

2

= ln
(
x−1

)
− 1

2 Power Rule

= ln
(
x−1

)
− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1

)
− ln (

√
e)

= ln

(
x−1

√
e

)
Quotient Rule

= ln

(
1

x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the opposite of what it
was for dismantling them. That is, if we are interested in rewriting an expression as a single
logarithm, we apply log properties following the usual order of operations: deal with multiples of
logs first with the Power Rule, then deal with addition and subtraction using the Product and
Quotient Rules, respectively. Additionally, we find that using log properties in this fashion can
increase the domain of the expression. For example, we leave it to the reader to verify the domain

of f(x) = log3(x−1)−log3(x+1) is (1,∞) but the domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1)∪(1,∞).

We will need to keep this in mind when we solve equations involving logarithms in Section 6.4 - it
is precisely for this reason we will have to check for extraneous solutions.

The two logarithm buttons commonly found on calculators are the ‘LOG’ and ‘LN’ buttons which
correspond to the common and natural logs, respectively. Suppose we wanted an approximation to
log2(7). The answer should be a little less than 3, (Can you explain why?) but how do we coerce
the calculator into telling us a more accurate answer? We need the following theorem.

Theorem 6.7. (Change of Base Formulas) Let a, b > 0, a, b 6= 1.

� ax = bx logb(a) for all real numbers x.

� loga(x) =
logb(x)

logb(a)
for all real numbers x > 0.

The proofs of the Change of Base formulas are a result of the other properties studied in this
section. If we start with bx logb(a) and use the Power Rule in the exponent to rewrite x logb(a) as
logb (ax) and then apply one of the Inverse Properties in Theorem 6.3, we get

bx logb(a) = blogb(a
x) = ax,
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as required. To verify the logarithmic form of the property, we also use the Power Rule and an
Inverse Property. We note that

loga(x) · logb(a) = logb

(
aloga(x)

)
= logb(x),

and we get the result by dividing through by logb(a). Of course, the authors can’t help but point
out the inverse relationship between these two change of base formulas. To change the base of
an exponential expression, we multiply the input by the factor logb(a). To change the base of a
logarithmic expression, we divide the output by the factor logb(a). While, in the grand scheme
of things, both change of base formulas are really saying the same thing, the logarithmic form is
the one usually encountered in Algebra while the exponential form isn’t usually introduced until
Calculus.4 What Theorem 6.7 really tells us is that all exponential and logarithmic functions are
just scalings of one another. Not only does this explain why their graphs have similar shapes, but
it also tells us that we could do all of mathematics with a single base - be it 10, e, 42, or 117. Your
Calculus teacher will have more to say about this when the time comes.

Example 6.2.3. Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a calculator, as appropriate.

1. 32 to base 10 2. 2x to base e

3. log4(5) to base e 4. ln(x) to base 10

Solution.

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain 32 = 102 log(3). Typing
the latter in the calculator produces an answer of 9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our calculator, we can graph
f(x) = 2x and g(x) = ex ln(2). Their graphs are indistinguishable which provides evidence
that they are the same function.

y = f(x) = 2x and y = g(x) = ex ln(2)

4The authors feel so strongly about showing students that every property of logarithms comes from and corresponds
to a property of exponents that we have broken tradition with the vast majority of other authors in this field. This
isn’t the first time this happened, and it certainly won’t be the last.
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3. Applying the change of base with a = 4 and b = e leads us to write log4(5) = ln(5)
ln(4) . Evaluating

this in the calculator gives ln(5)
ln(4) ≈ 1.16. How do we check this really is the value of log4(5)?

By definition, log4(5) is the exponent we put on 4 to get 5. The calculator confirms this.5

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and g(x) = log(x)

log(e) and find
both graphs appear to be identical.

y = f(x) = ln(x) and y = g(x) = log(x)
log(e)

5Which means if it is lying to us about the first answer it gave us, at least it is being consistent.
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6.2.1 Exercises

In Exercises 1 - 15, expand the given logarithm and simplify. Assume when necessary that all
quantities represent positive real numbers.

1. ln(x3y2) 2. log2

(
128

x2 + 4

)
3. log5

( z
25

)3

4. log(1.23× 1037) 5. ln

(√
z

xy

)
6. log5

(
x2 − 25

)
7. log√2

(
4x3
)

8. log 1
3
(9x(y3 − 8)) 9. log

(
1000x3y5

)

10. log3

(
x2

81y4

)
11. ln

(
4

√
xy

ez

)
12. log6

(
216

x3y

)4

13. log

(
100x

√
y

3
√

10

)
14. log 1

2

(
4

3
√
x2

y
√
z

)
15. ln

(
3
√
x

10
√
yz

)

In Exercises 16 - 29, use the properties of logarithms to write the expression as a single logarithm.

16. 4 ln(x) + 2 ln(y) 17. log2(x) + log2(y)− log2(z)

18. log3(x)− 2 log3(y) 19. 1
2 log3(x)− 2 log3(y)− log3(z)

20. 2 ln(x)− 3 ln(y)− 4 ln(z) 21. log(x)− 1
3 log(z) + 1

2 log(y)

22. −1
3 ln(x)− 1

3 ln(y) + 1
3 ln(z) 23. log5(x)− 3

24. 3− log(x) 25. log7(x) + log7(x− 3)− 2

26. ln(x) + 1
2 27. log2(x) + log4(x)

28. log2(x) + log4(x− 1) 29. log2(x) + log 1
2
(x− 1)
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In Exercises 30 - 33, use the appropriate change of base formula to convert the given expression to
an expression with the indicated base.

30. 7x−1 to base e 31. log3(x+ 2) to base 10

32.

(
2

3

)x
to base e 33. log(x2 + 1) to base e

In Exercises 34 - 39, use the appropriate change of base formula to approximate the logarithm.

34. log3(12) 35. log5(80) 36. log6(72)

37. log4

(
1

10

)
38. log 3

5
(1000) 39. log 2

3
(50)

40. Compare and contrast the graphs of y = ln(x2) and y = 2 ln(x).

41. Prove the Quotient Rule and Power Rule for Logarithms.

42. Give numerical examples to show that, in general,

(a) logb(x+ y) 6= logb(x) + logb(y)

(b) logb(x− y) 6= logb(x)− logb(y)

(c) logb

(
x

y

)
6= logb(x)

logb(y)

43. The Henderson-Hasselbalch Equation: Suppose HA represents a weak acid. Then we have a
reversible chemical reaction

HA
 H+ +A−.

The acid disassociation constant, Ka, is given by

Kα =
[H+][A−]

[HA]
= [H+]

[A−]

[HA]
,

where the square brackets denote the concentrations just as they did in Exercise 77 in Section
6.1. The symbol pKa is defined similarly to pH in that pKa = − log(Ka). Using the definition
of pH from Exercise 77 and the properties of logarithms, derive the Henderson-Hasselbalch
Equation which states

pH = pKa + log
[A−]

[HA]

44. Research the history of logarithms including the origin of the word ‘logarithm’ itself. Why is
the abbreviation of natural log ‘ln’ and not ‘nl’?

45. There is a scene in the movie ‘Apollo 13’ in which several people at Mission Control use slide
rules to verify a computation. Was that scene accurate? Look for other pop culture references
to logarithms and slide rules.
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6.2.2 Answers

1. 3 ln(x) + 2 ln(y) 2. 7− log2(x2 + 4)

3. 3 log5(z)− 6 4. log(1.23) + 37

5. 1
2 ln(z)− ln(x)− ln(y) 6. log5(x− 5) + log5(x+ 5)

7. 3 log√2(x) + 4 8. −2 + log 1
3
(x) + log 1

3
(y− 2) + log 1

3
(y2 + 2y+ 4)

9. 3 + 3 log(x) + 5 log(y) 10. 2 log3(x)− 4− 4 log3(y)

11. 1
4 ln(x) + 1

4 ln(y)− 1
4 −

1
4 ln(z) 12. 12− 12 log6(x)− 4 log6(y)

13. 5
3 + log(x) + 1

2 log(y) 14. −2 + 2
3 log 1

2
(x)− log 1

2
(y)− 1

2 log 1
2
(z)

15. 1
3 ln(x)− ln(10)− 1

2 ln(y)− 1
2 ln(z) 16. ln(x4y2)

17. log2

(xy
z

)
18. log3

(
x
y2

)
19. log3

(√
x

y2z

)
20. ln

(
x2

y3z4

)
21. log

(
x
√
y

3√z

)
22. ln

(
3

√
z
xy

)
23. log5

(
x

125

)
24. log

(
1000
x

)
25. log7

(
x(x−3)

49

)
26. ln (x

√
e) 27. log2

(
x3/2

)
28. log2

(
x
√
x− 1

)
29. log2

(
x
x−1

)
30. 7x−1 = e(x−1) ln(7) 31. log3(x+ 2) = log(x+2)

log(3)

32.
(

2
3

)x
= ex ln( 2

3
) 33. log(x2 + 1) = ln(x2+1)

ln(10)

34. log3(12) ≈ 2.26186 35. log5(80) ≈ 2.72271

36. log6(72) ≈ 2.38685 37. log4

(
1
10

)
≈ −1.66096

38. log 3
5
(1000) ≈ −13.52273 39. log 2

3
(50) ≈ −9.64824
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6.3 Exponential Equations and Inequalities

In this section we will develop techniques for solving equations involving exponential functions.
Suppose, for instance, we wanted to solve the equation 2x = 128. After a moment’s calculation, we
find 128 = 27, so we have 2x = 27. The one-to-one property of exponential functions, detailed in
Theorem 6.4, tells us that 2x = 27 if and only if x = 7. This means that not only is x = 7 a solution
to 2x = 27, it is the only solution. Now suppose we change the problem ever so slightly to 2x = 129.
We could use one of the inverse properties of exponentials and logarithms listed in Theorem 6.3 to
write 129 = 2log2(129). We’d then have 2x = 2log2(129), which means our solution is x = log2(129).
This makes sense because, after all, the definition of log2(129) is ‘the exponent we put on 2 to get
129.’ Indeed we could have obtained this solution directly by rewriting the equation 2x = 129 in
its logarithmic form log2(129) = x. Either way, in order to get a reasonable decimal approximation
to this number, we’d use the change of base formula, Theorem 6.7, to give us something more
calculator friendly,1 say log2(129) = ln(129)

ln(2) . Another way to arrive at this answer is as follows

2x = 129
ln (2x) = ln(129) Take the natural log of both sides.
x ln(2) = ln(129) Power Rule

x =
ln(129)

ln(2)

‘Taking the natural log’ of both sides is akin to squaring both sides: since f(x) = ln(x) is a function,
as long as two quantities are equal, their natural logs are equal.2 Also note that we treat ln(2) as
any other non-zero real number and divide it through3 to isolate the variable x. We summarize
below the two common ways to solve exponential equations, motivated by our examples.

Steps for Solving an Equation involving Exponential Functions

1. Isolate the exponential function.

2. (a) If convenient, express both sides with a common base and equate the exponents.

(b) Otherwise, take the natural log of both sides of the equation and use the Power Rule.

Example 6.3.1. Solve the following equations. Check your answer graphically using a calculator.

1. 23x = 161−x 2. 2000 = 1000 · 3−0.1t 3. 9 · 3x = 72x

4. 75 = 100
1+3e−2t 5. 25x = 5x + 6 6. ex−e−x

2 = 5

Solution.

1You can use natural logs or common logs. We choose natural logs. (In Calculus, you’ll learn these are the most
‘mathy’ of the logarithms.)

2This is also the ‘if’ part of the statement logb(u) = logb(w) if and only if u = w in Theorem 6.4.
3Please resist the temptation to divide both sides by ‘ln’ instead of ln(2). Just like it wouldn’t make sense to

divide both sides by the square root symbol ‘
√

’ when solving x
√

2 = 5, it makes no sense to divide by ‘ln’.
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1. Since 16 is a power of 2, we can rewrite 23x = 161−x as 23x =
(
24
)1−x

. Using properties of

exponents, we get 23x = 24(1−x). Using the one-to-one property of exponential functions, we
get 3x = 4(1−x) which gives x = 4

7 . To check graphically, we set f(x) = 23x and g(x) = 161−x

and see that they intersect at x = 4
7 ≈ 0.5714.

2. We begin solving 2000 = 1000 ·3−0.1t by dividing both sides by 1000 to isolate the exponential
which yields 3−0.1t = 2. Since it is inconvenient to write 2 as a power of 3, we use the natural
log to get ln

(
3−0.1t

)
= ln(2). Using the Power Rule, we get −0.1t ln(3) = ln(2), so we

divide both sides by −0.1 ln(3) to get t = − ln(2)
0.1 ln(3) = −10 ln(2)

ln(3) . On the calculator, we graph

f(x) = 2000 and g(x) = 1000 · 3−0.1x and find that they intersect at x = −10 ln(2)
ln(3) ≈ −6.3093.

y = f(x) = 23x and y = f(x) = 2000 and
y = g(x) = 161−x y = g(x) = 1000 · 3−0.1x

3. We first note that we can rewrite the equation 9·3x = 72x as 32 ·3x = 72x to obtain 3x+2 = 72x.
Since it is not convenient to express both sides as a power of 3 (or 7 for that matter) we use
the natural log: ln

(
3x+2

)
= ln

(
72x
)
. The power rule gives (x + 2) ln(3) = 2x ln(7). Even

though this equation appears very complicated, keep in mind that ln(3) and ln(7) are just
constants. The equation (x+ 2) ln(3) = 2x ln(7) is actually a linear equation and as such we
gather all of the terms with x on one side, and the constants on the other. We then divide
both sides by the coefficient of x, which we obtain by factoring.

(x+ 2) ln(3) = 2x ln(7)
x ln(3) + 2 ln(3) = 2x ln(7)

2 ln(3) = 2x ln(7)− x ln(3)
2 ln(3) = x(2 ln(7)− ln(3)) Factor.

x = 2 ln(3)
2 ln(7)−ln(3)

Graphing f(x) = 9·3x and g(x) = 72x on the calculator, we see that these two graphs intersect

at x = 2 ln(3)
2 ln(7)−ln(3) ≈ 0.7866.

4. Our objective in solving 75 = 100
1+3e−2t is to first isolate the exponential. To that end, we

clear denominators and get 75
(
1 + 3e−2t

)
= 100. From this we get 75 + 225e−2t = 100,

which leads to 225e−2t = 25, and finally, e−2t = 1
9 . Taking the natural log of both sides
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gives ln
(
e−2t

)
= ln

(
1
9

)
. Since natural log is log base e, ln

(
e−2t

)
= −2t. We can also use

the Power Rule to write ln
(

1
9

)
= − ln(9). Putting these two steps together, we simplify

ln
(
e−2t

)
= ln

(
1
9

)
to −2t = − ln(9). We arrive at our solution, t = ln(9)

2 which simplifies to
t = ln(3). (Can you explain why?) The calculator confirms the graphs of f(x) = 75 and
g(x) = 100

1+3e−2x intersect at x = ln(3) ≈ 1.099.

y = f(x) = 9 · 3x and y = f(x) = 75 and

y = g(x) = 72x y = g(x) = 100
1+3e−2x

5. We start solving 25x = 5x + 6 by rewriting 25 = 52 so that we have
(
52
)x

= 5x + 6, or
52x = 5x + 6. Even though we have a common base, having two terms on the right hand side
of the equation foils our plan of equating exponents or taking logs. If we stare at this long
enough, we notice that we have three terms with the exponent on one term exactly twice that
of another. To our surprise and delight, we have a ‘quadratic in disguise’. Letting u = 5x,
we have u2 = (5x)2 = 52x so the equation 52x = 5x + 6 becomes u2 = u + 6. Solving this as
u2 − u − 6 = 0 gives u = −2 or u = 3. Since u = 5x, we have 5x = −2 or 5x = 3. Since
5x = −2 has no real solution, (Why not?) we focus on 5x = 3. Since it isn’t convenient to
express 3 as a power of 5, we take natural logs and get ln (5x) = ln(3) so that x ln(5) = ln(3)

or x = ln(3)
ln(5) . On the calculator, we see the graphs of f(x) = 25x and g(x) = 5x + 6 intersect

at x = ln(3)
ln(5) ≈ 0.6826.

6. At first, it’s unclear how to proceed with ex−e−x
2 = 5, besides clearing the denominator to

obtain ex− e−x = 10. Of course, if we rewrite e−x = 1
ex , we see we have another denominator

lurking in the problem: ex − 1
ex = 10. Clearing this denominator gives us e2x − 1 = 10ex,

and once again, we have an equation with three terms where the exponent on one term is
exactly twice that of another - a ‘quadratic in disguise.’ If we let u = ex, then u2 = e2x so the
equation e2x − 1 = 10ex can be viewed as u2 − 1 = 10u. Solving u2 − 10u− 1 = 0, we obtain
by the quadratic formula u = 5±

√
26. From this, we have ex = 5±

√
26. Since 5−

√
26 < 0,

we get no real solution to ex = 5−
√

26, but for ex = 5 +
√

26, we take natural logs to obtain
x = ln

(
5 +
√

26
)
. If we graph f(x) = ex−e−x

2 and g(x) = 5, we see that the graphs intersect

at x = ln
(
5 +
√

26
)
≈ 2.312
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y = f(x) = 25x and y = f(x) = ex−e−x
2 and

y = g(x) = 5x + 6 y = g(x) = 5

The authors would be remiss not to mention that Example 6.3.1 still holds great educational
value. Much can be learned about logarithms and exponentials by verifying the solutions obtained
in Example 6.3.1 analytically. For example, to verify our solution to 2000 = 1000 · 3−0.1t, we
substitute t = −10 ln(2)

ln(3) and obtain

2000
?
= 1000 · 3−0.1

(
− 10 ln(2)

ln(3)

)
2000

?
= 1000 · 3

ln(2)
ln(3)

2000
?
= 1000 · 3log3(2) Change of Base

2000
?
= 1000 · 2 Inverse Property

2000
X
= 2000

The other solutions can be verified by using a combination of log and inverse properties. Some fall
out quite quickly, while others are more involved. We leave them to the reader.

Since exponential functions are continuous on their domains, the Intermediate Value Theorem 3.1
applies. As with the algebraic functions in Section 5.3, this allows us to solve inequalities using
sign diagrams as demonstrated below.

Example 6.3.2. Solve the following inequalities. Check your answer graphically using a calculator.

1. 2x
2−3x − 16 ≥ 0 2.

ex

ex − 4
≤ 3 3. xe2x < 4x

Solution.

1. Since we already have 0 on one side of the inequality, we set r(x) = 2x
2−3x− 16. The domain

of r is all real numbers, so in order to construct our sign diagram, we need to find the zeros of
r. Setting r(x) = 0 gives 2x

2−3x− 16 = 0 or 2x
2−3x = 16. Since 16 = 24 we have 2x

2−3x = 24,
so by the one-to-one property of exponential functions, x2 − 3x = 4. Solving x2 − 3x− 4 = 0
gives x = 4 and x = −1. From the sign diagram, we see r(x) ≥ 0 on (−∞,−1]∪ [4,∞), which
corresponds to where the graph of y = r(x) = 2x

2−3x − 16, is on or above the x-axis.
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(+)

−1

0 (−)

4

0 (+)

y = r(x) = 2x
2−3x − 16

2. The first step we need to take to solve ex

ex−4 ≤ 3 is to get 0 on one side of the inequality. To
that end, we subtract 3 from both sides and get a common denominator

ex

ex − 4
≤ 3

ex

ex − 4
− 3 ≤ 0

ex

ex − 4
− 3 (ex − 4)

ex − 4
≤ 0 Common denomintors.

12− 2ex

ex − 4
≤ 0

We set r(x) = 12−2ex

ex−4 and we note that r is undefined when its denominator ex − 4 = 0, or
when ex = 4. Solving this gives x = ln(4), so the domain of r is (−∞, ln(4)) ∪ (ln(4),∞). To
find the zeros of r, we solve r(x) = 0 and obtain 12− 2ex = 0. Solving for ex, we find ex = 6,
or x = ln(6). When we build our sign diagram, finding test values may be a little tricky since
we need to check values around ln(4) and ln(6). Recall that the function ln(x) is increasing4

which means ln(3) < ln(4) < ln(5) < ln(6) < ln(7). While the prospect of determining the
sign of r (ln(3)) may be very unsettling, remember that eln(3) = 3, so

r (ln(3)) =
12− 2eln(3)

eln(3) − 4
=

12− 2(3)

3− 4
= −6

We determine the signs of r (ln(5)) and r (ln(7)) similarly.5 From the sign diagram, we
find our answer to be (−∞, ln(4)) ∪ [ln(6),∞). Using the calculator, we see the graph of
f(x) = ex

ex−4 is below the graph of g(x) = 3 on (−∞, ln(4)) ∪ (ln(6),∞), and they intersect
at x = ln(6) ≈ 1.792.

4This is because the base of ln(x) is e > 1. If the base b were in the interval 0 < b < 1, then logb(x) would
decreasing.

5We could, of course, use the calculator, but what fun would that be?
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(−)

ln(4)

� (+)

ln(6)

0 (−)

y = f(x) = ex

ex−4

y = g(x) = 3

3. As before, we start solving xe2x < 4x by getting 0 on one side of the inequality, xe2x−4x < 0.
We set r(x) = xe2x − 4x and since there are no denominators, even-indexed radicals, or logs,
the domain of r is all real numbers. Setting r(x) = 0 produces xe2x − 4x = 0. We factor
to get x

(
e2x − 4

)
= 0 which gives x = 0 or e2x − 4 = 0. To solve the latter, we isolate the

exponential and take logs to get 2x = ln(4), or x = ln(4)
2 = ln(2). (Can you explain the last

equality using properties of logs?) As in the previous example, we need to be careful about
choosing test values. Since ln(1) = 0, we choose ln

(
1
2

)
, ln

(
3
2

)
and ln(3). Evaluating,6 we get

r
(
ln
(

1
2

))
= ln

(
1
2

)
e2 ln( 1

2) − 4 ln
(

1
2

)
= ln

(
1
2

)
eln( 1

2)
2

− 4 ln
(

1
2

)
Power Rule

= ln
(

1
2

)
eln( 1

4) − 4 ln
(

1
2

)
= 1

4 ln
(

1
2

)
− 4 ln

(
1
2

)
= −15

4 ln
(

1
2

)
Since 1

2 < 1, ln
(

1
2

)
< 0 and we get r(ln

(
1
2

)
) is (+), so r(x) < 0 on (0, ln(2)). The calculator

confirms that the graph of f(x) = xe2x is below the graph of g(x) = 4x on these intervals.7

(+)

0

0 (−)

ln(2)

0 (+)

y = f(x) = xe2x and y = g(x) = 4x

6A calculator can be used at this point. As usual, we proceed without apologies, with the analytical method.
7Note: ln(2) ≈ 0.693.



454 Exponential and Logarithmic Functions

Example 6.3.3. Recall from Example 6.1.2 that the temperature of coffee T (in degrees Fahren-
heit) t minutes after it is served can be modeled by T (t) = 70 + 90e−0.1t. When will the coffee be
warmer than 100◦F?

Solution. We need to find when T (t) > 100, or in other words, we need to solve the inequality
70 + 90e−0.1t > 100. Getting 0 on one side of the inequality, we have 90e−0.1t − 30 > 0, and
we set r(t) = 90e−0.1t − 30. The domain of r is artificially restricted due to the context of the
problem to [0,∞), so we proceed to find the zeros of r. Solving 90e−0.1t − 30 = 0 results in
e−0.1t = 1

3 so that t = −10 ln
(

1
3

)
which, after a quick application of the Power Rule leaves us with

t = 10 ln(3). If we wish to avoid using the calculator to choose test values, we note that since 1 < 3,
0 = ln(1) < ln(3) so that 10 ln(3) > 0. So we choose t = 0 as a test value in [0, 10 ln(3)). Since
3 < 4, 10 ln(3) < 10 ln(4), so the latter is our choice of a test value for the interval (10 ln(3),∞).
Our sign diagram is below, and next to it is our graph of y = T (t) from Example 6.1.2 with the
horizontal line y = 100.

0

(+)

10 ln(3)

0 (−)

H.A. y = 70

y = 100

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

120

140

160

180

y = T (t)

In order to interpret what this means in the context of the real world, we need a reasonable
approximation of the number 10 ln(3) ≈ 10.986. This means it takes approximately 11 minutes for
the coffee to cool to 100◦F. Until then, the coffee is warmer than that.8

We close this section by finding the inverse of a function which is a composition of a rational
function with an exponential function.

Example 6.3.4. The function f(x) =
5ex

ex + 1
is one-to-one. Find a formula for f−1(x) and check

your answer graphically using your calculator.

Solution. We start by writing y = f(x), and interchange the roles of x and y. To solve for y, we
first clear denominators and then isolate the exponential function.

8Critics may point out that since we needed to use the calculator to interpret our answer anyway, why not use it
earlier to simplify the computations? It is a fair question which we answer unfairly: it’s our book.
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y =
5ex

ex + 1

x =
5ey

ey + 1
Switch x and y

x (ey + 1) = 5ey

xey + x = 5ey

x = 5ey − xey

x = ey(5− x)

ey =
x

5− x

ln (ey) = ln

(
x

5− x

)
y = ln

(
x

5− x

)
We claim f−1(x) = ln

(
x

5−x

)
. To verify this analytically, we would need to verify the compositions(

f−1 ◦ f
)

(x) = x for all x in the domain of f and that
(
f ◦ f−1

)
(x) = x for all x in the domain

of f−1. We leave this to the reader. To verify our solution graphically, we graph y = f(x) = 5ex

ex+1

and y = g(x) = ln
(

x
5−x

)
on the same set of axes and observe the symmetry about the line y = x.

Note the domain of f is the range of g and vice-versa.

y = f(x) = 5ex

ex+1 and y = g(x) = ln
(

x
5−x

)
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6.3.1 Exercises

In Exercises 1 - 33, solve the equation analytically.

1. 24x = 8 2. 3(x−1) = 27 3. 52x−1 = 125

4. 42x = 1
2 5. 8x = 1

128 6. 2(x3−x) = 1

7. 37x = 814−2x 8. 9 · 37x =
(

1
9

)2x
9. 32x = 5

10. 5−x = 2 11. 5x = −2 12. 3(x−1) = 29

13. (1.005)12x = 3 14. e−5730k = 1
2 15. 2000e0.1t = 4000

16. 500
(
1− e2x

)
= 250 17. 70 + 90e−0.1t = 75 18. 30− 6e−0.1x = 20

19.
100ex

ex + 2
= 50 20.

5000

1 + 2e−3t
= 2500 21.

150

1 + 29e−0.8t
= 75

22. 25
(

4
5

)x
= 10 23. e2x = 2ex 24. 7e2x = 28e−6x

25. 3(x−1) = 2x 26. 3(x−1) =
(

1
2

)(x+5) 27. 73+7x = 34−2x

28. e2x − 3ex − 10 = 0 29. e2x = ex + 6 30. 4x + 2x = 12

31. ex − 3e−x = 2 32. ex + 15e−x = 8 33. 3x + 25 · 3−x = 10

In Exercises 34 - 39, solve the inequality analytically.

34. ex > 53 35. 1000 (1.005)12t ≥ 3000

36. 2(x3−x) < 1 37. 25
(

4
5

)x ≥ 10

38.
150

1 + 29e−0.8t
≤ 130 39. 70 + 90e−0.1t ≤ 75

In Exercises 40 - 45, use your calculator to help you solve the equation or inequality.

40. 2x = x2 41. ex = ln(x) + 5 42. e
√
x = x+ 1

43. e−x − xe−x ≥ 0 44. 3(x−1) < 2x 45. ex < x3 − x

46. Since f(x) = ln(x) is a strictly increasing function, if 0 < a < b then ln(a) < ln(b). Use this
fact to solve the inequality e(3x−1) > 6 without a sign diagram. Use this technique to solve
the inequalities in Exercises 34 - 39. (NOTE: Isolate the exponential function first!)

47. Compute the inverse of f(x) =
ex − e−x

2
. State the domain and range of both f and f−1.
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48. In Example 6.3.4, we found that the inverse of f(x) =
5ex

ex + 1
was f−1(x) = ln

(
x

5− x

)
but

we left a few loose ends for you to tie up.

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
5x

x+ 1
and h(x) = ex. Show that f = g ◦ h and that (g ◦ h)−1 = h−1 ◦ g−1.

(We know this is true in general by Exercise 31 in Section 5.2, but it’s nice to see a
specific example of the property.)

49. With the help of your classmates, solve the inequality ex > xn for a variety of natural
numbers n. What might you conjecture about the “speed” at which f(x) = ex grows versus
any polynomial?
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6.3.2 Answers

1. x = 3
4 2. x = 4 3. x = 2

4. x = −1
4 5. x = −7

3 6. x = −1, 0, 1

7. x = 16
15 8. x = − 2

11 9. x = ln(5)
2 ln(3)

10. x = − ln(2)
ln(5)

11. No solution. 12. x = ln(29)+ln(3)
ln(3)

13. x = ln(3)
12 ln(1.005) 14. k =

ln( 1
2)

−5730 = ln(2)
5730

15. t = ln(2)
0.1 = 10 ln(2)

16. x = 1
2 ln

(
1
2

)
= −1

2 ln(2) 17. t =
ln( 1

18)
−0.1 = 10 ln(18)

18. x = −10 ln
(

5
3

)
= 10 ln

(
3
5

)
19. x = ln(2)

20. t = 1
3 ln(2) 21. t =

ln( 1
29)

−0.8 = 5
4 ln(29)

22. x =
ln( 2

5)
ln( 4

5)
= ln(2)−ln(5)

ln(4)−ln(5)
23. x = ln(2)

24. x = −1
8 ln

(
1
4

)
= 1

4 ln(2) 25. x = ln(3)
ln(3)−ln(2)

26. x =
ln(3)+5 ln( 1

2)
ln(3)−ln( 1

2)
= ln(3)−5 ln(2)

ln(3)+ln(2)
27. x = 4 ln(3)−3 ln(7)

7 ln(7)+2 ln(3)

28. x = ln(5) 29. x = ln(3) 30. x = ln(3)
ln(2)

31. x = ln(3) 32. x = ln(3), ln(5) 33. x = ln(5)
ln(3)

34. (ln(53),∞) 35.
[

ln(3)
12 ln(1.005) ,∞

)
36. (−∞,−1) ∪ (0, 1) 37.

(
−∞, ln( 2

5)
ln( 4

5)

]
=
(
−∞, ln(2)−ln(5)

ln(4)−ln(5)

]
38.

(
−∞, ln( 2

377)
−0.8

]
=
(
−∞, 5

4 ln
(

377
2

)]
39.

[
ln( 1

18)
−0.1 ,∞

)
= [10 ln(18),∞)

40. x ≈ −0.76666, x = 2, x = 4 41. x ≈ 0.01866, x ≈ 1.7115

42. x = 0 43. (−∞, 1]

44. ≈ (−∞, 2.7095) 45. ≈ (2.3217, 4.3717)

46. x > 1
3(ln(6) + 1)

47. f−1 = ln
(
x+
√
x2 + 1

)
. Both f and f−1 have domain (−∞,∞) and range (−∞,∞).
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6.4 Logarithmic Equations and Inequalities

In Section 6.3 we solved equations and inequalities involving exponential functions using one of
two basic strategies. We now turn our attention to equations and inequalities involving logarithmic
functions, and not surprisingly, there are two basic strategies to choose from. For example, suppose
we wish to solve log2(x) = log2(5). Theorem 6.4 tells us that the only solution to this equation
is x = 5. Now suppose we wish to solve log2(x) = 3. If we want to use Theorem 6.4, we need to
rewrite 3 as a logarithm base 2. We can use Theorem 6.3 to do just that: 3 = log2

(
23
)

= log2(8).
Our equation then becomes log2(x) = log2(8) so that x = 8. However, we could have arrived at the
same answer, in fewer steps, by using Theorem 6.3 to rewrite the equation log2(x) = 3 as 23 = x,
or x = 8. We summarize the two common ways to solve log equations below.

Steps for Solving an Equation involving Logarithmic Functions

1. Isolate the logarithmic function.

2. (a) If convenient, express both sides as logs with the same base and equate the arguments
of the log functions.

(b) Otherwise, rewrite the log equation as an exponential equation.

Example 6.4.1. Solve the following equations. Check your solutions graphically using a calculator.

1. log117(1− 3x) = log117

(
x2 − 3

)
2. 2− ln(x− 3) = 1

3. log6(x+ 4) + log6(3− x) = 1 4. log7(1− 2x) = 1− log7(3− x)

5. log2(x+ 3) = log2(6− x) + 3 6. 1 + 2 log4(x+ 1) = 2 log2(x)

Solution.

1. Since we have the same base on both sides of the equation log117(1 − 3x) = log117

(
x2 − 3

)
,

we equate what’s inside the logs to get 1 − 3x = x2 − 3. Solving x2 + 3x − 4 = 0 gives
x = −4 and x = 1. To check these answers using the calculator, we make use of the change

of base formula and graph f(x) = ln(1−3x)
ln(117) and g(x) =

ln(x2−3)
ln(117) and we see they intersect only

at x = −4. To see what happened to the solution x = 1, we substitute it into our original
equation to obtain log117(−2) = log117(−2). While these expressions look identical, neither
is a real number,1 which means x = 1 is not in the domain of the original equation, and is
not a solution.

2. Our first objective in solving 2−ln(x−3) = 1 is to isolate the logarithm. We get ln(x−3) = 1,
which, as an exponential equation, is e1 = x − 3. We get our solution x = e + 3. On the
calculator, we see the graph of f(x) = 2 − ln(x − 3) intersects the graph of g(x) = 1 at
x = e+ 3 ≈ 5.718.

1They do, however, represent the same family of complex numbers. We stop ourselves at this point and refer the
reader to a good course in Complex Variables.
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y = f(x) = log117(1− 3x) and y = f(x) = 2− ln(x− 3) and
y = g(x) = log117

(
x2 − 3

)
y = g(x) = 1

3. We can start solving log6(x+4)+log6(3−x) = 1 by using the Product Rule for logarithms to
rewrite the equation as log6 [(x+ 4)(3− x)] = 1. Rewriting this as an exponential equation,
we get 61 = (x + 4)(3 − x). This reduces to x2 + x − 6 = 0, which gives x = −3 and x = 2.

Graphing y = f(x) = ln(x+4)
ln(6) + ln(3−x)

ln(6) and y = g(x) = 1, we see they intersect twice, at
x = −3 and x = 2.

y = f(x) = log6(x+ 4) + log6(3− x) and y = g(x) = 1

4. Taking a cue from the previous problem, we begin solving log7(1− 2x) = 1− log7(3− x) by
first collecting the logarithms on the same side, log7(1−2x)+ log7(3−x) = 1, and then using
the Product Rule to get log7[(1− 2x)(3− x)] = 1. Rewriting this as an exponential equation
gives 71 = (1−2x)(3−x) which gives the quadratic equation 2x2−7x−4 = 0. Solving, we find

x = −1
2 and x = 4. Graphing, we find y = f(x) = ln(1−2x)

ln(7) and y = g(x) = 1− ln(3−x)
ln(7) intersect

only at x = −1
2 . Checking x = 4 in the original equation produces log7(−7) = 1− log7(−1),

which is a clear domain violation.

5. Starting with log2(x + 3) = log2(6 − x) + 3, we gather the logarithms to one side and get
log2(x+ 3)− log2(6− x) = 3. We then use the Quotient Rule and convert to an exponential
equation

log2

(
x+ 3

6− x

)
= 3 ⇐⇒ 23 =

x+ 3

6− x

This reduces to the linear equation 8(6− x) = x+ 3, which gives us x = 5. When we graph

f(x) = ln(x+3)
ln(2) and g(x) = ln(6−x)

ln(2) + 3, we find they intersect at x = 5.
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y = f(x) = log7(1− 2x) and y = f(x) = log2(x+ 3) and
y = g(x) = 1− log7(3− x) y = g(x) = log2(6− x) + 3

6. Starting with 1 + 2 log4(x+ 1) = 2 log2(x), we gather the logs to one side to get the equation
1 = 2 log2(x) − 2 log4(x + 1). Before we can combine the logarithms, however, we need a
common base. Since 4 is a power of 2, we use change of base to convert

log4(x+ 1) =
log2(x+ 1)

log2(4)
=

1

2
log2(x+ 1)

Hence, our original equation becomes

1 = 2 log2(x)− 2
(

1
2 log2(x+ 1)

)
1 = 2 log2(x)− log2(x+ 1)

1 = log2

(
x2
)
− log2(x+ 1) Power Rule

1 = log2

(
x2

x+ 1

)
Quotient Rule

Rewriting this in exponential form, we get x2

x+1 = 2 or x2 − 2x− 2 = 0. Using the quadratic

formula, we get x = 1 ±
√

3. Graphing f(x) = 1 + 2 ln(x+1)
ln(4) and g(x) = 2 ln(x)

ln(2) , we see the

graphs intersect only at x = 1 +
√

3 ≈ 2.732. The solution x = 1 −
√

3 < 0, which means if
substituted into the original equation, the term 2 log2

(
1−
√

3
)

is undefined.

y = f(x) = 1 + 2 log4(x+ 1) and y = g(x) = 2 log2(x)
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If nothing else, Example 6.4.1 demonstrates the importance of checking for extraneous solutions2

when solving equations involving logarithms. Even though we checked our answers graphically,
extraneous solutions are easy to spot - any supposed solution which causes a negative number
inside a logarithm needs to be discarded. As with the equations in Example 6.3.1, much can be
learned from checking all of the answers in Example 6.4.1 analytically. We leave this to the reader
and turn our attention to inequalities involving logarithmic functions. Since logarithmic functions
are continuous on their domains, we can use sign diagrams.

Example 6.4.2. Solve the following inequalities. Check your answer graphically using a calculator.

1.
1

ln(x) + 1
≤ 1 2. (log2(x))2 < 2 log2(x) + 3 3. x log(x+ 1) ≥ x

Solution.

1. We start solving 1
ln(x)+1 ≤ 1 by getting 0 on one side of the inequality: 1

ln(x)+1 − 1 ≤ 0.

Getting a common denominator yields 1
ln(x)+1 −

ln(x)+1
ln(x)+1 ≤ 0 which reduces to − ln(x)

ln(x)+1 ≤ 0,

or ln(x)
ln(x)+1 ≥ 0. We define r(x) = ln(x)

ln(x)+1 and set about finding the domain and the zeros

of r. Due to the appearance of the term ln(x), we require x > 0. In order to keep the
denominator away from zero, we solve ln(x) + 1 = 0 so ln(x) = −1, so x = e−1 = 1

e . Hence,

the domain of r is
(
0, 1

e

)
∪
(

1
e ,∞

)
. To find the zeros of r, we set r(x) = ln(x)

ln(x)+1 = 0 so that

ln(x) = 0, and we find x = e0 = 1. In order to determine test values for r without resorting
to the calculator, we need to find numbers between 0, 1

e , and 1 which have a base of e. Since
e ≈ 2.718 > 1, 0 < 1

e2
< 1

e <
1√
e
< 1 < e. To determine the sign of r

(
1
e2

)
, we use the fact that

ln
(

1
e2

)
= ln

(
e−2
)

= −2, and find r
(

1
e2

)
= −2
−2+1 = 2, which is (+). The rest of the test values

are determined similarly. From our sign diagram, we find the solution to be
(
0, 1

e

)
∪ [1,∞).

Graphing f(x) = 1
ln(x)+1 and g(x) = 1, we see the graph of f is below the graph of g on the

solution intervals, and that the graphs intersect at x = 1.

0

(+)

1
e

� (−)

1

0 (+)

y = f(x) = 1
ln(x)+1 and y = g(x) = 1

2Recall that an extraneous solution is an answer obtained analytically which does not satisfy the original equation.
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2. Moving all of the nonzero terms of (log2(x))2 < 2 log2(x) + 3 to one side of the inequality,
we have (log2(x))2 − 2 log2(x) − 3 < 0. Defining r(x) = (log2(x))2 − 2 log2(x) − 3, we get
the domain of r is (0,∞), due to the presence of the logarithm. To find the zeros of r, we
set r(x) = (log2(x))2 − 2 log2(x) − 3 = 0 which results in a ‘quadratic in disguise.’ We set
u = log2(x) so our equation becomes u2− 2u− 3 = 0 which gives us u = −1 and u = 3. Since
u = log2(x), we get log2(x) = −1, which gives us x = 2−1 = 1

2 , and log2(x) = 3, which yields
x = 23 = 8. We use test values which are powers of 2: 0 < 1

4 <
1
2 < 1 < 8 < 16, and from our

sign diagram, we see r(x) < 0 on
(

1
2 , 8
)
. Geometrically, we see the graph of f(x) =

(
ln(x)
ln(2)

)2

is below the graph of y = g(x) = 2 ln(x)
ln(2) + 3 on the solution interval.

0

(+)

1
2

0 (−)

8

0 (+)

y = f(x) = (log2(x))2 and y = g(x) = 2 log2(x) + 3

3. We begin to solve x log(x+1) ≥ x by subtracting x from both sides to get x log(x+1)−x ≥ 0.
We define r(x) = x log(x+1)−x and due to the presence of the logarithm, we require x+1 > 0,
or x > −1. To find the zeros of r, we set r(x) = x log(x + 1) − x = 0. Factoring, we get
x (log(x+ 1)− 1) = 0, which gives x = 0 or log(x+1)−1 = 0. The latter gives log(x+1) = 1,
or x + 1 = 101, which admits x = 9. We select test values x so that x + 1 is a power of 10,
and we obtain −1 < −0.9 < 0 <

√
10 − 1 < 9 < 99. Our sign diagram gives the solution to

be (−1, 0] ∪ [9,∞). The calculator indicates the graph of y = f(x) = x log(x + 1) is above
y = g(x) = x on the solution intervals, and the graphs intersect at x = 0 and x = 9.

−1

(+)

0

0 (−)

9

0 (+)

y = f(x) = x log(x+ 1) and y = g(x) = x
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Our next example revisits the concept of pH first seen in Exercise 77 in Section 6.1.

Example 6.4.3. In order to successfully breed Ippizuti fish the pH of a freshwater tank must be
at least 7.8 but can be no more than 8.5. Determine the corresponding range of hydrogen ion
concentration, and check your answer using a calculator.

Solution. Recall from Exercise 77 in Section 6.1 that pH = − log[H+] where [H+] is the hydrogen
ion concentration in moles per liter. We require 7.8 ≤ − log[H+] ≤ 8.5 or −7.8 ≥ log[H+] ≥ −8.5.
To solve this compound inequality we solve −7.8 ≥ log[H+] and log[H+] ≥ −8.5 and take the
intersection of the solution sets.3 The former inequality yields 0 < [H+] ≤ 10−7.8 and the latter
yields [H+] ≥ 10−8.5. Taking the intersection gives us our final answer 10−8.5 ≤ [H+] ≤ 10−7.8.
(Your Chemistry professor may want the answer written as 3.16 × 10−9 ≤ [H+] ≤ 1.58 × 10−8.)
After carefully adjusting the viewing window on the graphing calculator we see that the graph of
f(x) = − log(x) lies between the lines y = 7.8 and y = 8.5 on the interval [3.16×10−9, 1.58×10−8].

The graphs of y = f(x) = − log(x), y = 7.8 and y = 8.5

We close this section by finding an inverse of a one-to-one function which involves logarithms.

Example 6.4.4. The function f(x) =
log(x)

1− log(x)
is one-to-one. Find a formula for f−1(x) and

check your answer graphically using your calculator.
Solution. We first write y = f(x) then interchange the x and y and solve for y.

y = f(x)

y =
log(x)

1− log(x)

x =
log(y)

1− log(y)
Interchange x and y.

x (1− log(y)) = log(y)
x− x log(y) = log(y)

x = x log(y) + log(y)
x = (x+ 1) log(y)

x

x+ 1
= log(y)

y = 10
x
x+1 Rewrite as an exponential equation.

3Refer to page 4 for a discussion of what this means.
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We have f−1(x) = 10
x
x+1 . Graphing f and f−1 on the same viewing window yields

y = f(x) =
log(x)

1− log(x)
and y = g(x) = 10

x
x+1
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6.4.1 Exercises

In Exercises 1 - 24, solve the equation analytically.

1. log(3x− 1) = log(4− x) 2. log2

(
x3
)

= log2(x)

3. ln
(
8− x2

)
= ln(2− x) 4. log5

(
18− x2

)
= log5(6− x)

5. log3(7− 2x) = 2 6. log 1
2
(2x− 1) = −3

7. ln
(
x2 − 99

)
= 0 8. log(x2 − 3x) = 1

9. log125

(
3x− 2

2x+ 3

)
=

1

3
10. log

( x

10−3

)
= 4.7

11. − log(x) = 5.4 12. 10 log
( x

10−12

)
= 150

13. 6− 3 log5(2x) = 0 14. 3 ln(x)− 2 = 1− ln(x)

15. log3(x− 4) + log3(x+ 4) = 2 16. log5(2x+ 1) + log5(x+ 2) = 1

17. log169(3x+ 7)− log169(5x− 9) =
1

2
18. ln(x+ 1)− ln(x) = 3

19. 2 log7(x) = log7(2) + log7(x+ 12) 20. log(x)− log(2) = log(x+ 8)− log(x+ 2)

21. log3(x) = log 1
3
(x) + 8 22. ln(ln(x)) = 3

23. (log(x))2 = 2 log(x) + 15 24. ln(x2) = (ln(x))2

In Exercises 25 - 30, solve the inequality analytically.

25.
1− ln(x)

x2
< 0 26. x ln(x)− x > 0

27. 10 log
( x

10−12

)
≥ 90 28. 5.6 ≤ log

( x

10−3

)
≤ 7.1

29. 2.3 < − log(x) < 5.4 30. ln(x2) ≤ (ln(x))2

In Exercises 31 - 34, use your calculator to help you solve the equation or inequality.

31. ln(x) = e−x 32. ln(x) = 4
√
x

33. ln(x2 + 1) ≥ 5 34. ln(−2x3 − x2 + 13x− 6) < 0
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35. Since f(x) = ex is a strictly increasing function, if a < b then ea < eb. Use this fact to
solve the inequality ln(2x + 1) < 3 without a sign diagram. Use this technique to solve the
inequalities in Exercises 27 - 29. (Compare this to Exercise 46 in Section 6.3.)

36. Solve ln(3− y)− ln(y) = 2x+ ln(5) for y.

37. In Example 6.4.4 we found the inverse of f(x) =
log(x)

1− log(x)
to be f−1(x) = 10

x
x+1 .

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
x

1− x
and h(x) = log(x). Show that f = g ◦ h and (g ◦ h)−1 = h−1 ◦ g−1.

(We know this is true in general by Exercise 31 in Section 5.2, but it’s nice to see a
specific example of the property.)

38. Let f(x) =
1

2
ln

(
1 + x

1− x

)
. Compute f−1(x) and find its domain and range.

39. Explain the equation in Exercise 10 and the inequality in Exercise 28 above in terms of the
Richter scale for earthquake magnitude. (See Exercise 75 in Section 6.1.)

40. Explain the equation in Exercise 12 and the inequality in Exercise 27 above in terms of sound
intensity level as measured in decibels. (See Exercise 76 in Section 6.1.)

41. Explain the equation in Exercise 11 and the inequality in Exercise 29 above in terms of the
pH of a solution. (See Exercise 77 in Section 6.1.)

42. With the help of your classmates, solve the inequality n
√
x > ln(x) for a variety of natural

numbers n. What might you conjecture about the “speed” at which f(x) = ln(x) grows
versus any principal nth root function?
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6.4.2 Answers

1. x = 5
4 2. x = 1 3. x = −2

4. x = −3, 4 5. x = −1 6. x = 9
2

7. x = ±10 8. x = −2, 5 9. x = −17
7

10. x = 101.7 11. x = 10−5.4 12. x = 103

13. x = 25
2 14. x = e3/4 15. x = 5

16. x = 1
2 17. x = 2 18. x = 1

e3−1

19. x = 6 20. x = 4 21. x = 81

22. x = ee
3

23. x = 10−3, 105 24. x = 1, x = e2

25. (e,∞) 26. (e,∞) 27.
[
10−3,∞

)
28.

[
102.6, 104.1

]
29.

(
10−5.4, 10−2.3

)
30. (0, 1] ∪ [e2,∞)

31. x ≈ 1.3098 32. x ≈ 4.177, x ≈ 5503.665

33. ≈ (−∞,−12.1414) ∪ (12.1414,∞) 34. ≈ (−3.0281,−3)∪(0.5, 0.5991)∪(1.9299, 2)

35. −1

2
< x <

e3 − 1

2
36. y =

3

5e2x + 1

38. f−1(x) =
e2x − 1

e2x + 1
=
ex − e−x

ex + e−x
. (To see why we rewrite this in this form, see Exercise 51 in

Section 11.10.) The domain of f−1 is (−∞,∞) and its range is the same as the domain of f ,
namely (−1, 1).
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6.5 Applications of Exponential and Logarithmic Functions

As we mentioned in Section 6.1, exponential and logarithmic functions are used to model a wide
variety of behaviors in the real world. In the examples that follow, note that while the applications
are drawn from many different disciplines, the mathematics remains essentially the same. Due to
the applied nature of the problems we will examine in this section, the calculator is often used to
express our answers as decimal approximations.

6.5.1 Applications of Exponential Functions

Perhaps the most well-known application of exponential functions comes from the financial world.
Suppose you have $100 to invest at your local bank and they are offering a whopping 5 % annual
percentage interest rate. This means that after one year, the bank will pay you 5% of that $100,
or $100(0.05) = $5 in interest, so you now have $105.1 This is in accordance with the formula for
simple interest which you have undoubtedly run across at some point before.

Equation 6.1. Simple Interest The amount of interest I accrued at an annual rate r on an
investmenta P after t years is

I = Prt

The amount A in the account after t years is given by

A = P + I = P + Prt = P (1 + rt)

aCalled the principal

Suppose, however, that six months into the year, you hear of a better deal at a rival bank.2

Naturally, you withdraw your money and try to invest it at the higher rate there. Since six months
is one half of a year, that initial $100 yields $100(0.05)

(
1
2

)
= $2.50 in interest. You take your

$102.50 off to the competitor and find out that those restrictions which may apply actually do
apply to you, and you return to your bank which happily accepts your $102.50 for the remaining
six months of the year. To your surprise and delight, at the end of the year your statement reads
$105.06, not $105 as you had expected.3 Where did those extra six cents come from? For the first
six months of the year, interest was earned on the original principal of $100, but for the second
six months, interest was earned on $102.50, that is, you earned interest on your interest. This is
the basic concept behind compound interest. In the previous discussion, we would say that the
interest was compounded twice, or semiannually.4 If more money can be earned by earning interest
on interest already earned, a natural question to ask is what happens if the interest is compounded
more often, say 4 times a year, which is every three months, or ‘quarterly.’ In this case, the
money is in the account for three months, or 1

4 of a year, at a time. After the first quarter, we
have A = P (1 + rt) = $100

(
1 + 0.05 · 1

4

)
= $101.25. We now invest the $101.25 for the next three

1How generous of them!
2Some restrictions may apply.
3Actually, the final balance should be $105.0625.
4Using this convention, simple interest after one year is the same as compounding the interest only once.
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months and find that at the end of the second quarter, we haveA = $101.25
(
1 + 0.05 · 1

4

)
≈ $102.51.

Continuing in this manner, the balance at the end of the third quarter is $103.79, and, at last, we
obtain $105.08. The extra two cents hardly seems worth it, but we see that we do in fact get more
money the more often we compound. In order to develop a formula for this phenomenon, we need
to do some abstract calculations. Suppose we wish to invest our principal P at an annual rate r and
compound the interest n times per year. This means the money sits in the account 1

n

th
of a year

between compoundings. Let Ak denote the amount in the account after the kth compounding. Then
A1 = P

(
1 + r

(
1
n

))
which simplifies to A1 = P

(
1 + r

n

)
. After the second compounding, we use A1

as our new principal and get A2 = A1

(
1 + r

n

)
=
[
P
(
1 + r

n

)] (
1 + r

n

)
= P

(
1 + r

n

)2
. Continuing in

this fashion, we get A3 = P
(
1 + r

n

)3
, A4 = P

(
1 + r

n

)4
, and so on, so that Ak = P

(
1 + r

n

)k
. Since

we compound the interest n times per year, after t years, we have nt compoundings. We have just
derived the general formula for compound interest below.

Equation 6.2. Compounded Interest: If an initial principal P is invested at an annual rate
r and the interest is compounded n times per year, the amount A in the account after t years is

A(t) = P
(

1 +
r

n

)nt
If we take P = 100, r = 0.05, and n = 4, Equation 6.2 becomes A(t) = 100

(
1 + 0.05

4

)4t
which

reduces to A(t) = 100(1.0125)4t. To check this new formula against our previous calculations, we

find A
(

1
4

)
= 100(1.0125)4( 1

4) = 101.25, A
(

1
2

)
≈ $102.51, A

(
3
4

)
≈ $103.79, and A(1) ≈ $105.08.

Example 6.5.1. Suppose $2000 is invested in an account which offers 7.125% compounded monthly.

1. Express the amount A in the account as a function of the term of the investment t in years.

2. How much is in the account after 5 years?

3. How long will it take for the initial investment to double?

4. Find and interpret the average rate of change5 of the amount in the account from the end of
the fourth year to the end of the fifth year, and from the end of the thirty-fourth year to the
end of the thirty-fifth year.

Solution.

1. Substituting P = 2000, r = 0.07125, and n = 12 (since interest is compounded monthly) into

Equation 6.2 yields A(t) = 2000
(
1 + 0.07125

12

)12t
= 2000(1.0059375)12t.

2. Since t represents the length of the investment in years, we substitute t = 5 into A(t) to find
A(5) = 2000(1.0059375)12(5) ≈ 2852.92. After 5 years, we have approximately $2852.92.

5See Definition 2.3 in Section 2.1.
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3. Our initial investment is $2000, so to find the time it takes this to double, we need to find t
when A(t) = 4000. We get 2000(1.0059375)12t = 4000, or (1.0059375)12t = 2. Taking natural

logs as in Section 6.3, we get t = ln(2)
12 ln(1.0059375) ≈ 9.75. Hence, it takes approximately 9 years

9 months for the investment to double.

4. To find the average rate of change of A from the end of the fourth year to the end of the
fifth year, we compute A(5)−A(4)

5−4 ≈ 195.63. Similarly, the average rate of change of A from

the end of the thirty-fourth year to the end of the thirty-fifth year is A(35)−A(34)
35−34 ≈ 1648.21.

This means that the value of the investment is increasing at a rate of approximately $195.63
per year between the end of the fourth and fifth years, while that rate jumps to $1648.21 per
year between the end of the thirty-fourth and thirty-fifth years. So, not only is it true that
the longer you wait, the more money you have, but also the longer you wait, the faster the
money increases.6

We have observed that the more times you compound the interest per year, the more money you
will earn in a year. Let’s push this notion to the limit.7 Consider an investment of $1 invested
at 100% interest for 1 year compounded n times a year. Equation 6.2 tells us that the amount of
money in the account after 1 year is A =

(
1 + 1

n

)n
. Below is a table of values relating n and A.

n A

1 2

2 2.25

4 ≈ 2.4414

12 ≈ 2.6130

360 ≈ 2.7145

1000 ≈ 2.7169

10000 ≈ 2.7181

100000 ≈ 2.7182

As promised, the more compoundings per year, the more money there is in the account, but we
also observe that the increase in money is greatly diminishing. We are witnessing a mathematical
‘tug of war’. While we are compounding more times per year, and hence getting interest on our
interest more often, the amount of time between compoundings is getting smaller and smaller, so
there is less time to build up additional interest. With Calculus, we can show8 that as n → ∞,
A =

(
1 + 1

n

)n → e, where e is the natural base first presented in Section 6.1. Taking the number
of compoundings per year to infinity results in what is called continuously compounded interest.

Theorem 6.8. If you invest $1 at 100% interest compounded continuously, then you will have
$e at the end of one year.

6In fact, the rate of increase of the amount in the account is exponential as well. This is the quality that really
defines exponential functions and we refer the reader to a course in Calculus.

7Once you’ve had a semester of Calculus, you’ll be able to fully appreciate this very lame pun.
8Or define, depending on your point of view.
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Using this definition of e and a little Calculus, we can take Equation 6.2 and produce a formula for
continuously compounded interest.

Equation 6.3. Continuously Compounded Interest: If an initial principal P is invested
at an annual rate r and the interest is compounded continuously, the amount A in the account
after t years is

A(t) = Pert

If we take the scenario of Example 6.5.1 and compare monthly compounding to continuous com-
pounding over 35 years, we find that monthly compounding yields A(35) = 2000(1.0059375)12(35)

which is about $24,035.28, whereas continuously compounding gives A(35) = 2000e0.07125(35) which
is about $24,213.18 - a difference of less than 1%.

Equations 6.2 and 6.3 both use exponential functions to describe the growth of an investment.
Curiously enough, the same principles which govern compound interest are also used to model
short term growth of populations. In Biology, The Law of Uninhibited Growth states as
its premise that the instantaneous rate at which a population increases at any time is directly
proportional to the population at that time.9 In other words, the more organisms there are at a
given moment, the faster they reproduce. Formulating the law as stated results in a differential
equation, which requires Calculus to solve. Its solution is stated below.

Equation 6.4. Uninhibited Growth: If a population increases according to The Law of
Uninhibited Growth, the number of organisms N at time t is given by the formula

N(t) = N0e
kt,

where N(0) = N0 (read ‘N nought’) is the initial number of organisms and k > 0 is the constant
of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t)

It is worth taking some time to compare Equations 6.3 and 6.4. In Equation 6.3, we use P to denote
the initial investment; in Equation 6.4, we use N0 to denote the initial population. In Equation
6.3, r denotes the annual interest rate, and so it shouldn’t be too surprising that the k in Equation
6.4 corresponds to a growth rate as well. While Equations 6.3 and 6.4 look entirely different, they
both represent the same mathematical concept.

Example 6.5.2. In order to perform arthrosclerosis research, epithelial cells are harvested from
discarded umbilical tissue and grown in the laboratory. A technician observes that a culture of
twelve thousand cells grows to five million cells in one week. Assuming that the cells follow The
Law of Uninhibited Growth, find a formula for the number of cells, N , in thousands, after t days.

Solution. We begin with N(t) = N0e
kt. Since N is to give the number of cells in thousands,

we have N0 = 12, so N(t) = 12ekt. In order to complete the formula, we need to determine the

9The average rate of change of a function over an interval was first introduced in Section 2.1. Instantaneous rates
of change are the business of Calculus, as is mentioned on Page 161.
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growth rate k. We know that after one week, the number of cells has grown to five million. Since t
measures days and the units of N are in thousands, this translates mathematically to N(7) = 5000.

We get the equation 12e7k = 5000 which gives k = 1
7 ln

(
1250

3

)
. Hence, N(t) = 12e

t
7

ln( 1250
3 ). Of

course, in practice, we would approximate k to some desired accuracy, say k ≈ 0.8618, which we
can interpret as an 86.18% daily growth rate for the cells.

Whereas Equations 6.3 and 6.4 model the growth of quantities, we can use equations like them to
describe the decline of quantities. One example we’ve seen already is Example 6.1.1 in Section 6.1.
There, the value of a car declined from its purchase price of $25,000 to nothing at all. Another real
world phenomenon which follows suit is radioactive decay. There are elements which are unstable
and emit energy spontaneously. In doing so, the amount of the element itself diminishes. The
assumption behind this model is that the rate of decay of an element at a particular time is directly
proportional to the amount of the element present at that time. In other words, the more of the
element there is, the faster the element decays. This is precisely the same kind of hypothesis which
drives The Law of Uninhibited Growth, and as such, the equation governing radioactive decay is
hauntingly similar to Equation 6.4 with the exception that the rate constant k is negative.

Equation 6.5. Radioactive Decay The amount of a radioactive element A at time t is given
by the formula

A(t) = A0e
kt,

where A(0) = A0 is the initial amount of the element and k < 0 is the constant of proportionality
which satisfies the equation

(instantaneous rate of change of A(t) at time t) = k A(t)

Example 6.5.3. Iodine-131 is a commonly used radioactive isotope used to help detect how well
the thyroid is functioning. Suppose the decay of Iodine-131 follows the model given in Equation 6.5,
and that the half-life10 of Iodine-131 is approximately 8 days. If 5 grams of Iodine-131 is present
initially, find a function which gives the amount of Iodine-131, A, in grams, t days later.

Solution. Since we start with 5 grams initially, Equation 6.5 gives A(t) = 5ekt. Since the half-life is
8 days, it takes 8 days for half of the Iodine-131 to decay, leaving half of it behind. Hence, A(8) = 2.5

which means 5e8k = 2.5. Solving, we get k = 1
8 ln

(
1
2

)
= − ln(2)

8 ≈ −0.08664, which we can interpret

as a loss of material at a rate of 8.664% daily. Hence, A(t) = 5e−
t ln(2)

8 ≈ 5e−0.08664t.

We now turn our attention to some more mathematically sophisticated models. One such model
is Newton’s Law of Cooling, which we first encountered in Example 6.1.2 of Section 6.1. In that
example we had a cup of coffee cooling from 160◦F to room temperature 70◦F according to the
formula T (t) = 70 + 90e−0.1t, where t was measured in minutes. In this situation, we know the
physical limit of the temperature of the coffee is room temperature,11 and the differential equation

10The time it takes for half of the substance to decay.
11The Second Law of Thermodynamics states that heat can spontaneously flow from a hotter object to a colder

one, but not the other way around. Thus, the coffee could not continue to release heat into the air so as to cool below
room temperature.
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which gives rise to our formula for T (t) takes this into account. Whereas the radioactive decay
model had a rate of decay at time t directly proportional to the amount of the element which
remained at time t, Newton’s Law of Cooling states that the rate of cooling of the coffee at a given
time t is directly proportional to how much of a temperature gap exists between the coffee at time
t and room temperature, not the temperature of the coffee itself. In other words, the coffee cools
faster when it is first served, and as its temperature nears room temperature, the coffee cools ever
more slowly. Of course, if we take an item from the refrigerator and let it sit out in the kitchen,
the object’s temperature will rise to room temperature, and since the physics behind warming and
cooling is the same, we combine both cases in the equation below.

Equation 6.6. Newton’s Law of Cooling (Warming): The temperature T of an object at
time t is given by the formula

T (t) = Ta + (T0 − Ta) e−kt,

where T (0) = T0 is the initial temperature of the object, Ta is the ambient temperaturea and
k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of T (t) at time t) = k (T (t)− Ta)
aThat is, the temperature of the surroundings.

If we re-examine the situation in Example 6.1.2 with T0 = 160, Ta = 70, and k = 0.1, we get,
according to Equation 6.6, T (t) = 70+(160−70)e−0.1t which reduces to the original formula given.
The rate constant k = 0.1 indicates the coffee is cooling at a rate equal to 10% of the difference
between the temperature of the coffee and its surroundings. Note in Equation 6.6 that the constant
k is positive for both the cooling and warming scenarios. What determines if the function T (t)
is increasing or decreasing is if T0 (the initial temperature of the object) is greater than Ta (the
ambient temperature) or vice-versa, as we see in our next example.

Example 6.5.4. A 40◦F roast is cooked in a 350◦F oven. After 2 hours, the temperature of the
roast is 125◦F.

1. Assuming the temperature of the roast follows Newton’s Law of Warming, find a formula for
the temperature of the roast T as a function of its time in the oven, t, in hours.

2. The roast is done when the internal temperature reaches 165◦F. When will the roast be done?

Solution.

1. The initial temperature of the roast is 40◦F, so T0 = 40. The environment in which we
are placing the roast is the 350◦F oven, so Ta = 350. Newton’s Law of Warming tells us
T (t) = 350 + (40− 350)e−kt, or T (t) = 350− 310e−kt. To determine k, we use the fact that
after 2 hours, the roast is 125◦F, which means T (2) = 125. This gives rise to the equation
350− 310e−2k = 125 which yields k = −1

2 ln
(

45
62

)
≈ 0.1602. The temperature function is

T (t) = 350− 310e
t
2

ln( 45
62) ≈ 350− 310e−0.1602t.



6.5 Applications of Exponential and Logarithmic Functions 475

2. To determine when the roast is done, we set T (t) = 165. This gives 350− 310e−0.1602t = 165
whose solution is t = − 1

0.1602 ln
(

37
62

)
≈ 3.22. It takes roughly 3 hours and 15 minutes to cook

the roast completely.

If we had taken the time to graph y = T (t) in Example 6.5.4, we would have found the horizontal
asymptote to be y = 350, which corresponds to the temperature of the oven. We can also arrive
at this conclusion by applying a bit of ‘number sense’. As t → ∞, −0.1602t ≈ very big (−) so
that e−0.1602t ≈ very small (+). The larger the value of t, the smaller e−0.1602t becomes so that
T (t) ≈ 350 − very small (+), which indicates the graph of y = T (t) is approaching its horizontal
asymptote y = 350 from below. Physically, this means the roast will eventually warm up to 350◦F.12

The function T is sometimes called a limited growth model, since the function T remains bounded
as t → ∞. If we apply the principles behind Newton’s Law of Cooling to a biological example, it
says the growth rate of a population is directly proportional to how much room the population has
to grow. In other words, the more room for expansion, the faster the growth rate. The logistic
growth model combines The Law of Uninhibited Growth with limited growth and states that the
rate of growth of a population varies jointly with the population itself as well as the room the
population has to grow.

Equation 6.7. Logistic Growth: If a population behaves according to the assumptions of
logistic growth, the number of organisms N at time t is given by the equation

N(t) =
L

1 + Ce−kLt
,

where N(0) = N0 is the initial population, L is the limiting population,a C is a measure of how
much room there is to grow given by

C =
L

N0

− 1.

and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t) (L−N(t))

aThat is, as t→∞, N(t)→ L

The logistic function is used not only to model the growth of organisms, but is also often used to
model the spread of disease and rumors.13

Example 6.5.5. The number of people N , in hundreds, at a local community college who have
heard the rumor ‘Carl is afraid of Virginia Woolf’ can be modeled using the logistic equation

N(t) =
84

1 + 2799e−t
,

12at which point it would be more toast than roast.
13Which can be just as damaging as diseases.
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where t ≥ 0 is the number of days after April 1, 2009.

1. Find and interpret N(0).

2. Find and interpret the end behavior of N(t).

3. How long until 4200 people have heard the rumor?

4. Check your answers to 2 and 3 using your calculator.

Solution.

1. We find N(0) = 84
1+2799e0

= 84
2800 = 3

100 . Since N(t) measures the number of people who have
heard the rumor in hundreds, N(0) corresponds to 3 people. Since t = 0 corresponds to April
1, 2009, we may conclude that on that day, 3 people have heard the rumor.14

2. We could simply note that N(t) is written in the form of Equation 6.7, and identify L = 84.
However, to see why the answer is 84, we proceed analytically. Since the domain of N is
restricted to t ≥ 0, the only end behavior of significance is t → ∞. As we’ve seen before,15

as t → ∞, we have 1997e−t → 0+ and so N(t) ≈ 84

1+very small (+)
≈ 84. Hence, as t → ∞,

N(t)→ 84. This means that as time goes by, the number of people who will have heard the
rumor approaches 8400.

3. To find how long it takes until 4200 people have heard the rumor, we set N(t) = 42. Solving
84

1+2799e−t = 42 gives t = ln(2799) ≈ 7.937. It takes around 8 days until 4200 people have
heard the rumor.

4. We graph y = N(x) using the calculator and see that the line y = 84 is the horizontal
asymptote of the graph, confirming our answer to part 2, and the graph intersects the line
y = 42 at x = ln(2799) ≈ 7.937, which confirms our answer to part 3.

y = f(x) = 84
1+2799e−x and y = f(x) = 84

1+2799e−x and

y = 84 y = 42

14Or, more likely, three people started the rumor. I’d wager Jeff, Jamie, and Jason started it. So much for telling
your best friends something in confidence!

15See, for example, Example 6.1.2.
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If we take the time to analyze the graph of y = N(x) above, we can see graphically how logistic
growth combines features of uninhibited and limited growth. The curve seems to rise steeply, then
at some point, begins to level off. The point at which this happens is called an inflection point
or is sometimes called the ‘point of diminishing returns’. At this point, even though the function is
still increasing, the rate at which it does so begins to decline. It turns out the point of diminishing
returns always occurs at half the limiting population. (In our case, when y = 42.) While these
concepts are more precisely quantified using Calculus, below are two views of the graph of y = N(x),
one on the interval [0, 8], the other on [8, 15]. The former looks strikingly like uninhibited growth;
the latter like limited growth.

y = f(x) = 84
1+2799e−x for y = f(x) = 84

1+2799e−x for

0 ≤ x ≤ 8 8 ≤ x ≤ 16

6.5.2 Applications of Logarithms

Just as many physical phenomena can be modeled by exponential functions, the same is true of
logarithmic functions. In Exercises 75, 76 and 77 of Section 6.1, we showed that logarithms are
useful in measuring the intensities of earthquakes (the Richter scale), sound (decibels) and acids and
bases (pH). We now present yet a different use of the a basic logarithm function, password strength.

Example 6.5.6. The information entropy H, in bits, of a randomly generated password consisting
of L characters is given by H = L log2(N), where N is the number of possible symbols for each
character in the password. In general, the higher the entropy, the stronger the password.

1. If a 7 character case-sensitive16 password is comprised of letters and numbers only, find the
associated information entropy.

2. How many possible symbol options per character is required to produce a 7 character password
with an information entropy of 50 bits?

Solution.

1. There are 26 letters in the alphabet, 52 if upper and lower case letters are counted as different.
There are 10 digits (0 through 9) for a total of N = 62 symbols. Since the password is to be

7 characters long, L = 7. Thus, H = 7 log2(62) = 7 ln(62)
ln(2) ≈ 41.68.

16That is, upper and lower case letters are treated as different characters.

http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Information_entropy
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2. We have L = 7 and H = 50 and we need to find N . Solving the equation 50 = 7 log2(N)
gives N = 250/7 ≈ 141.323, so we would need 142 different symbols to choose from.17

Chemical systems known as buffer solutions have the ability to adjust to small changes in acidity to
maintain a range of pH values. Buffer solutions have a wide variety of applications from maintaining
a healthy fish tank to regulating the pH levels in blood. Our next example shows how the pH in
a buffer solution is a little more complicated than the pH we first encountered in Exercise 77 in
Section 6.1.

Example 6.5.7. Blood is a buffer solution. When carbon dioxide is absorbed into the bloodstream
it produces carbonic acid and lowers the pH. The body compensates by producing bicarbonate, a
weak base to partially neutralize the acid. The equation18 which models blood pH in this situation
is pH = 6.1+log

(
800
x

)
, where x is the partial pressure of carbon dioxide in arterial blood, measured

in torr. Find the partial pressure of carbon dioxide in arterial blood if the pH is 7.4.

Solution. We set pH = 7.4 and get 7.4 = 6.1 + log
(

800
x

)
, or log

(
800
x

)
= 1.3. Solving, we find

x = 800
101.3 ≈ 40.09. Hence, the partial pressure of carbon dioxide in the blood is about 40 torr.

Another place logarithms are used is in data analysis. Suppose, for instance, we wish to model
the spread of influenza A (H1N1), the so-called ‘Swine Flu’. Below is data taken from the World
Health Organization (WHO) where t represents the number of days since April 28, 2009, and N
represents the number of confirmed cases of H1N1 virus worldwide.

t 1 2 3 4 5 6 7 8 9 10 11 12 13

N 148 257 367 658 898 1085 1490 1893 2371 2500 3440 4379 4694

t 14 15 16 17 18 19 20

N 5251 5728 6497 7520 8451 8480 8829

Making a scatter plot of the data treating t as the independent variable and N as the dependent
variable gives

Which models are suggested by the shape of the data? Thinking back Section 2.5, we try a
Quadratic Regression, with pretty good results.

17Since there are only 94 distinct ASCII keyboard characters, to achieve this strength, the number of characters in
the password should be increased.

18Derived from the Henderson-Hasselbalch Equation. See Exercise 43 in Section 6.2. Hasselbalch himself was
studying carbon dioxide dissolving in blood - a process called metabolic acidosis.

http://en.wikipedia.org/wiki/Buffer_solutions
http://www.who.int/csr/disease/swineflu/updates/en/index.html
http://en.wikipedia.org/wiki/Henderson-Hasselbalch_equation
http://en.wikipedia.org/wiki/Metabolic_acidosis
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However, is there any scientific reason for the data to be quadratic? Are there other models which
fit the data equally well, or better? Scientists often use logarithms in an attempt to ‘linearize’ data
sets - in other words, transform the data sets to produce ones which result in straight lines. To see
how this could work, suppose we guessed the relationship between N and t was some kind of power
function, not necessarily quadratic, say N = BtA. To try to determine the A and B, we can take
the natural log of both sides and get ln(N) = ln

(
BtA

)
. Using properties of logs to expand the right

hand side of this equation, we get ln(N) = A ln(t)+ ln(B). If we set X = ln(t) and Y = ln(N), this
equation becomes Y = AX + ln(B). In other words, we have a line with slope A and Y -intercept
ln(B). So, instead of plotting N versus t, we plot ln(N) versus ln(t).

ln(t) 0 0.693 1.099 1.386 1.609 1.792 1.946 2.079 2.197 2.302 2.398 2.485 2.565

ln(N) 4.997 5.549 5.905 6.489 6.800 6.989 7.306 7.546 7.771 7.824 8.143 8.385 8.454

ln(t) 2.639 2.708 2.773 2.833 2.890 2.944 2.996

ln(N) 8.566 8.653 8.779 8.925 9.042 9.045 9.086

Running a linear regression on the data gives

The slope of the regression line is a ≈ 1.512 which corresponds to our exponent A. The y-intercept
b ≈ 4.513 corresponds to ln(B), so that B ≈ 91.201. Hence, we get the model N = 91.201t1.512,
something from Section 5.3. Of course, the calculator has a built-in ‘Power Regression’ feature. If
we apply this to our original data set, we get the same model we arrived at before.19

19Critics may question why the authors of the book have chosen to even discuss linearization of data when the
calculator has a Power Regression built-in and ready to go. Our response: talk to your science faculty.
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This is all well and good, but the quadratic model appears to fit the data better, and we’ve yet to
mention any scientific principle which would lead us to believe the actual spread of the flu follows
any kind of power function at all. If we are to attack this data from a scientific perspective, it does
seem to make sense that, at least in the early stages of the outbreak, the more people who have
the flu, the faster it will spread, which leads us to proposing an uninhibited growth model. If we
assume N = BeAt then, taking logs as before, we get ln(N) = At + ln(B). If we set X = t and
Y = ln(N), then, once again, we get Y = AX + ln(B), a line with slope A and Y -intercept ln(B).
Plotting ln(N) versus t gives the following linear regression.

We see the slope is a ≈ 0.202 and which corresponds to A in our model, and the y-intercept is
b ≈ 5.596 which corresponds to ln(B). We get B ≈ 269.414, so that our model is N = 269.414e0.202t.
Of course, the calculator has a built-in ‘Exponential Regression’ feature which produces what
appears to be a different model N = 269.414(1.22333419)t. Using properties of exponents, we write

e0.202t =
(
e0.202

)t ≈ (1.223848)t, which, had we carried more decimal places, would have matched
the base of the calculator model exactly.

The exponential model didn’t fit the data as well as the quadratic or power function model, but
it stands to reason that, perhaps, the spread of the flu is not unlike that of the spread of a rumor



6.5 Applications of Exponential and Logarithmic Functions 481

and that a logistic model can be used to model the data. The calculator does have a ‘Logistic
Regression’ feature, and using it produces the model N = 10739.147

1+42.416e0.268t .

This appears to be an excellent fit, but there is no friendly coefficient of determination, R2, by
which to judge this numerically. There are good reasons for this, but they are far beyond the scope
of the text. Which of the models, quadratic, power, exponential, or logistic is the ‘best model’?
If by ‘best’ we mean ‘fits closest to the data,’ then the quadratic and logistic models are arguably
the winners with the power function model a close second. However, if we think about the science
behind the spread of the flu, the logistic model gets an edge. For one thing, it takes into account
that only a finite number of people will ever get the flu (according to our model, 10,739), whereas
the quadratic model predicts no limit to the number of cases. As we have stated several times
before in the text, mathematical models, regardless of their sophistication, are just that: models,
and they all have their limitations.20

20Speaking of limitations, as of June 3, 2009, there were 19,273 confirmed cases of influenza A (H1N1). This is
well above our prediction of 10,739. Each time a new report is issued, the data set increases and the model must be
recalculated. We leave this recalculation to the reader.
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6.5.3 Exercises

For each of the scenarios given in Exercises 1 - 6,

� Find the amount A in the account as a function of the term of the investment t in years.

� Determine how much is in the account after 5 years, 10 years, 30 years and 35 years. Round
your answers to the nearest cent.

� Determine how long will it take for the initial investment to double. Round your answer to
the nearest year.

� Find and interpret the average rate of change of the amount in the account from the end of
the fourth year to the end of the fifth year, and from the end of the thirty-fourth year to the
end of the thirty-fifth year. Round your answer to two decimal places.

1. $500 is invested in an account which offers 0.75%, compounded monthly.

2. $500 is invested in an account which offers 0.75%, compounded continuously.

3. $1000 is invested in an account which offers 1.25%, compounded monthly.

4. $1000 is invested in an account which offers 1.25%, compounded continuously.

5. $5000 is invested in an account which offers 2.125%, compounded monthly.

6. $5000 is invested in an account which offers 2.125%, compounded continuously.

7. Look back at your answers to Exercises 1 - 6. What can be said about the difference between
monthly compounding and continuously compounding the interest in those situations? With
the help of your classmates, discuss scenarios where the difference between monthly and
continuously compounded interest would be more dramatic. Try varying the interest rate,
the term of the investment and the principal. Use computations to support your answer.

8. How much money needs to be invested now to obtain $2000 in 3 years if the interest rate in a
savings account is 0.25%, compounded continuously? Round your answer to the nearest cent.

9. How much money needs to be invested now to obtain $5000 in 10 years if the interest rate in
a CD is 2.25%, compounded monthly? Round your answer to the nearest cent.

10. On May, 31, 2009, the Annual Percentage Rate listed at Jeff’s bank for regular savings
accounts was 0.25% compounded monthly. Use Equation 6.2 to answer the following.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 is three years?
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11. Jeff’s bank also offers a 36-month Certificate of Deposit (CD) with an APR of 2.25%.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 in three years?

(d) The Annual Percentage Yield is the simple interest rate that returns the same amount of
interest after one year as the compound interest does. With the help of your classmates,
compute the APY for this investment.

12. A finance company offers a promotion on $5000 loans. The borrower does not have to make
any payments for the first three years, however interest will continue to be charged to the
loan at 29.9% compounded continuously. What amount will be due at the end of the three
year period, assuming no payments are made? If the promotion is extended an additional
three years, and no payments are made, what amount would be due?

13. Use Equation 6.2 to show that the time it takes for an investment to double in value does
not depend on the principal P , but rather, depends only on the APR and the number of
compoundings per year. Let n = 12 and with the help of your classmates compute the
doubling time for a variety of rates r. Then look up the Rule of 72 and compare your answers
to what that rule says. If you’re really interested21 in Financial Mathematics, you could also
compare and contrast the Rule of 72 with the Rule of 70 and the Rule of 69.

In Exercises 14 - 18, we list some radioactive isotopes and their associated half-lives. Assume that
each decays according to the formula A(t) = A0e

kt where A0 is the initial amount of the material
and k is the decay constant. For each isotope:

� Find the decay constant k. Round your answer to four decimal places.

� Find a function which gives the amount of isotope A which remains after time t. (Keep the
units of A and t the same as the given data.)

� Determine how long it takes for 90% of the material to decay. Round your answer to two
decimal places. (HINT: If 90% of the material decays, how much is left?)

14. Cobalt 60, used in food irradiation, initial amount 50 grams, half-life of 5.27 years.

15. Phosphorus 32, used in agriculture, initial amount 2 milligrams, half-life 14 days.

16. Chromium 51, used to track red blood cells, initial amount 75 milligrams, half-life 27.7 days.

17. Americium 241, used in smoke detectors, initial amount 0.29 micrograms, half-life 432.7 years.

18. Uranium 235, used for nuclear power, initial amount 1 kg grams, half-life 704 million years.

21Awesome pun!
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19. With the help of your classmates, show that the time it takes for 90% of each isotope listed
in Exercises 14 - 18 to decay does not depend on the initial amount of the substance, but
rather, on only the decay constant k. Find a formula, in terms of k only, to determine how
long it takes for 90% of a radioactive isotope to decay.

20. In Example 6.1.1 in Section 6.1, the exponential function V (x) = 25
(

4
5

)x
was used to model

the value of a car over time. Use the properties of logs and/or exponents to rewrite the model
in the form V (t) = 25ekt.

21. The Gross Domestic Product (GDP) of the US (in billions of dollars) t years after the year
2000 can be modeled by:

G(t) = 9743.77e0.0514t

(a) Find and interpret G(0).

(b) According to the model, what should have been the GDP in 2007? In 2010? (According
to the US Department of Commerce, the 2007 GDP was $14, 369.1 billion and the 2010
GDP was $14, 657.8 billion.)

22. The diameter D of a tumor, in millimeters, t days after it is detected is given by:

D(t) = 15e0.0277t

(a) What was the diameter of the tumor when it was originally detected?

(b) How long until the diameter of the tumor doubles?

23. Under optimal conditions, the growth of a certain strain of E. Coli is modeled by the Law
of Uninhibited Growth N(t) = N0e

kt where N0 is the initial number of bacteria and t is the
elapsed time, measured in minutes. From numerous experiments, it has been determined that
the doubling time of this organism is 20 minutes. Suppose 1000 bacteria are present initially.

(a) Find the growth constant k. Round your answer to four decimal places.

(b) Find a function which gives the number of bacteria N(t) after t minutes.

(c) How long until there are 9000 bacteria? Round your answer to the nearest minute.

24. Yeast is often used in biological experiments. A research technician estimates that a sample of
yeast suspension contains 2.5 million organisms per cubic centimeter (cc). Two hours later,
she estimates the population density to be 6 million organisms per cc. Let t be the time
elapsed since the first observation, measured in hours. Assume that the yeast growth follows
the Law of Uninhibited Growth N(t) = N0e

kt.

(a) Find the growth constant k. Round your answer to four decimal places.

(b) Find a function which gives the number of yeast (in millions) per cc N(t) after t hours.

(c) What is the doubling time for this strain of yeast?

http://1.usa.gov/iimT40
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25. The Law of Uninhibited Growth also applies to situations where an animal is re-introduced
into a suitable environment. Such a case is the reintroduction of wolves to Yellowstone
National Park. According to the National Park Service, the wolf population in Yellowstone
National Park was 52 in 1996 and 118 in 1999. Using these data, find a function of the form
N(t) = N0e

kt which models the number of wolves t years after 1996. (Use t = 0 to represent
the year 1996. Also, round your value of k to four decimal places.) According to the model,
how many wolves were in Yellowstone in 2002? (The recorded number is 272.)

26. During the early years of a community, it is not uncommon for the population to grow
according to the Law of Uninhibited Growth. According to the Painesville Wikipedia entry,
in 1860, the Village of Painesville had a population of 2649. In 1920, the population was
7272. Use these two data points to fit a model of the form N(t) = N0e

kt were N(t) is the
number of Painesville Residents t years after 1860. (Use t = 0 to represent the year 1860.
Also, round the value of k to four decimal places.) According to this model, what was the
population of Painesville in 2010? (The 2010 census gave the population as 19,563) What
could be some causes for such a vast discrepancy? For more on this, see Exercise 37.

27. The population of Sasquatch in Bigfoot county is modeled by

P (t) =
120

1 + 3.167e−0.05t

where P (t) is the population of Sasquatch t years after 2010.

(a) Find and interpret P (0).

(b) Find the population of Sasquatch in Bigfoot county in 2013. Round your answer to the
nearest Sasquatch.

(c) When will the population of Sasquatch in Bigfoot county reach 60? Round your answer
to the nearest year.

(d) Find and interpret the end behavior of the graph of y = P (t). Check your answer using
a graphing utility.

28. The half-life of the radioactive isotope Carbon-14 is about 5730 years.

(a) Use Equation 6.5 to express the amount of Carbon-14 left from an initial N milligrams
as a function of time t in years.

(b) What percentage of the original amount of Carbon-14 is left after 20,000 years?

(c) If an old wooden tool is found in a cave and the amount of Carbon-14 present in it is
estimated to be only 42% of the original amount, approximately how old is the tool?

(d) Radiocarbon dating is not as easy as these exercises might lead you to believe. With
the help of your classmates, research radiocarbon dating and discuss why our model is
somewhat over-simplified.

http://www.nps.gov/yell/naturescience/wolves.htm
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29. Carbon-14 cannot be used to date inorganic material such as rocks, but there are many other
methods of radiometric dating which estimate the age of rocks. One of them, Rubidium-
Strontium dating, uses Rubidium-87 which decays to Strontium-87 with a half-life of 50
billion years. Use Equation 6.5 to express the amount of Rubidium-87 left from an initial 2.3
micrograms as a function of time t in billions of years. Research this and other radiometric
techniques and discuss the margins of error for various methods with your classmates.

30. Use Equation 6.5 to show that k = − ln(2)

h
where h is the half-life of the radioactive isotope.

31. A pork roast22 was taken out of a hardwood smoker when its internal temperature had
reached 180◦F and it was allowed to rest in a 75◦F house for 20 minutes after which its
internal temperature had dropped to 170◦F. Assuming that the temperature of the roast
follows Newton’s Law of Cooling (Equation 6.6),

(a) Express the temperature T (in ◦F) as a function of time t (in minutes).

(b) Find the time at which the roast would have dropped to 140◦F had it not been carved
and eaten.

32. In reference to Exercise 44 in Section 5.3, if Fritzy the Fox’s speed is the same as Chewbacca
the Bunny’s speed, Fritzy’s pursuit curve is given by

y(x) =
1

4
x2 − 1

4
ln(x)− 1

4

Use your calculator to graph this path for x > 0. Describe the behavior of y as x→ 0+ and
interpret this physically.

33. The current i measured in amps in a certain electronic circuit with a constant impressed
voltage of 120 volts is given by i(t) = 2 − 2e−10t where t ≥ 0 is the number of seconds after
the circuit is switched on. Determine the value of i as t → ∞. (This is called the steady
state current.)

34. If the voltage in the circuit in Exercise 33 above is switched off after 30 seconds, the current
is given by the piecewise-defined function

i(t) =

{
2− 2e−10t if 0 ≤ t < 30(

2− 2e−300
)
e−10t+300 if t ≥ 30

With the help of your calculator, graph y = i(t) and discuss with your classmates the physical
significance of the two parts of the graph 0 ≤ t < 30 and t ≥ 30.

22This roast was enjoyed by Jeff and his family on June 10, 2009. This is real data, folks!
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35. In Exercise 26 in Section 2.3, we stated that the cable of a suspension bridge formed a parabola
but that a free hanging cable did not. A free hanging cable forms a catenary and its basic

shape is given by y = 1
2 (ex + e−x). Use your calculator to graph this function. What are

its domain and range? What is its end behavior? Is it invertible? How do you think it is
related to the function given in Exercise 47 in Section 6.3 and the one given in the answer
to Exercise 38 in Section 6.4? When flipped upside down, the catenary makes an arch. The
Gateway Arch in St. Louis, Missouri has the shape

y = 757.7− 127.7

2

(
e

x
127.7 + e−

x
127.7

)
where x and y are measured in feet and −315 ≤ x ≤ 315. Find the highest point on the arch.

36. In Exercise 6a in Section 2.5, we examined the data set given below which showed how two
cats and their surviving offspring can produce over 80 million cats in just ten years. It is
virtually impossible to see this data plotted on your calculator, so plot x versus ln(x) as was
done on page 480. Find a linear model for this new data and comment on its goodness of fit.
Find an exponential model for the original data and comment on its goodness of fit.

Year x 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(x) 12 66 382 2201 12680 73041 420715 2423316 13968290 80399780

37. This exercise is a follow-up to Exercise 26 which more thoroughly explores the population
growth of Painesville, Ohio. According to Wikipedia, the population of Painesville, Ohio is
given by

Year t 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

Population 2649 3728 3841 4755 5024 5501 7272 10944 12235 14432

Year t 1960 1970 1980 1990 2000

Population 16116 16536 16351 15699 17503

(a) Use a graphing utility to perform an exponential regression on the data from 1860
through 1920 only, letting t = 0 represent the year 1860 as before. How does this
calculator model compare with the model you found in Exercise 26? Use the calcula-
tor’s exponential model to predict the population in 2010. (The 2010 census gave the
population as 19,563)

(b) The logistic model fit to all of the given data points for the population of Painesville t
years after 1860 (again, using t = 0 as 1860) is

P (t) =
18691

1 + 9.8505e−0.03617t

According to this model, what should the population of Painesville have been in 2010?
(The 2010 census gave the population as 19,563.) What is the population limit of
Painesville?

http://en.wikipedia.org/wiki/Painesville
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38. According to OhioBiz, the census data for Lake County, Ohio is as follows:

Year t 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950
Population 15576 15935 16326 18235 21680 22927 28667 41674 50020 75979

Year t 1960 1970 1980 1990 2000
Population 148700 197200 212801 215499 227511

(a) Use your calculator to fit a logistic model to these data, using x = 0 to represent the
year 1860.

(b) Graph these data and your logistic function on your calculator to judge the reasonable-
ness of the fit.

(c) Use this model to estimate the population of Lake County in 2010. (The 2010 census
gave the population to be 230,041.)

(d) According to your model, what is the population limit of Lake County, Ohio?

39. According to facebook, the number of active users of facebook has grown significantly since
its initial launch from a Harvard dorm room in February 2004. The chart below has the
approximate number U(x) of active users, in millions, x months after February 2004. For
example, the first entry (10, 1) means that there were 1 million active users in December 2004
and the last entry (77, 500) means that there were 500 million active users in July 2010.

Month x 10 22 34 38 44 54 59 60 62 65 67 70 72 77
Active Users in
Millions U(x) 1 5.5 12 20 50 100 150 175 200 250 300 350 400 500

With the help of your classmates, find a model for this data.

40. Each Monday during the registration period before the Fall Semester at LCCC, the Enrollment
Planning Council gets a report prepared by the data analysts in Institutional Effectiveness and
Planning.23 While the ongoing enrollment data is analyzed in many different ways, we shall
focus only on the overall headcount. Below is a chart of the enrollment data for Fall Semester
2008. It starts 21 weeks before “Opening Day” and ends on “Day 15” of the semester, but
we have relabeled the top row to be x = 1 through x = 24 so that the math is easier. (Thus,
x = 22 is Opening Day.)

Week x 1 2 3 4 5 6 7 8

Total
Headcount 1194 1564 2001 2475 2802 3141 3527 3790

Week x 9 10 11 12 13 14 15 16

Total
Headcount 4065 4371 4611 4945 5300 5657 6056 6478

23The authors thank Dr. Wendy Marley and her staff for this data and Dr. Marcia Ballinger for the permission to
use it in this problem.

http://www.ohiobiz.com/census/Lake.pdf
http://www.facebook.com/press/info.php?timeline
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Week x 17 18 19 20 21 22 23 24

Total
Headcount 7161 7772 8505 9256 10201 10743 11102 11181

With the help of your classmates, find a model for this data. Unlike most of the phenomena
we have studied in this section, there is no single differential equation which governs the
enrollment growth. Thus there is no scientific reason to rely on a logistic function even
though the data plot may lead us to that model. What are some factors which influence
enrollment at a community college and how can you take those into account mathematically?

41. When we wrote this exercise, the Enrollment Planning Report for Fall Semester 2009 had
only 10 data points for the first 10 weeks of the registration period. Those numbers are given
below.

Week x 1 2 3 4 5 6 7 8 9 10

Total
Headcount 1380 2000 2639 3153 3499 3831 4283 4742 5123 5398

With the help of your classmates, find a model for this data and make a prediction for the
Opening Day enrollment as well as the Day 15 enrollment. (WARNING: The registration
period for 2009 was one week shorter than it was in 2008 so Opening Day would be x = 21
and Day 15 is x = 23.)



490 Exponential and Logarithmic Functions

6.5.4 Answers

1. � A(t) = 500
(
1 + 0.0075

12

)12t

� A(5) ≈ $519.10, A(10) ≈ $538.93, A(30) ≈ $626.12, A(35) ≈ $650.03

� It will take approximately 92 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 3.88. This means that the investment is growing at an average rate
of $3.88 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 4.85. This means that
the investment is growing at an average rate of $4.85 per year at this point.

2. � A(t) = 500e0.0075t

� A(5) ≈ $519.11, A(10) ≈ $538.94, A(30) ≈ $626.16, A(35) ≈ $650.09

� It will take approximately 92 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 3.88. This means that the investment is growing at an average rate
of $3.88 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 4.86. This means that
the investment is growing at an average rate of $4.86 per year at this point.

3. � A(t) = 1000
(
1 + 0.0125

12

)12t

� A(5) ≈ $1064.46, A(10) ≈ $1133.07, A(30) ≈ $1454.71, A(35) ≈ $1548.48

� It will take approximately 55 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 13.22. This means that the investment is growing at an average rate
of $13.22 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 19.23. This means that
the investment is growing at an average rate of $19.23 per year at this point.

4. � A(t) = 1000e0.0125t

� A(5) ≈ $1064.49, A(10) ≈ $1133.15, A(30) ≈ $1454.99, A(35) ≈ $1548.83

� It will take approximately 55 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 13.22. This means that the investment is growing at an average rate
of $13.22 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 19.24. This means that
the investment is growing at an average rate of $19.24 per year at this point.

5. � A(t) = 5000
(
1 + 0.02125

12

)12t

� A(5) ≈ $5559.98, A(10) ≈ $6182.67, A(30) ≈ $9453.40, A(35) ≈ $10512.13

� It will take approximately 33 years for the investment to double.
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� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 116.80. This means that the investment is growing at an average rate
of $116.80 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 220.83. This means that
the investment is growing at an average rate of $220.83 per year at this point.

6. � A(t) = 5000e0.02125t

� A(5) ≈ $5560.50, A(10) ≈ $6183.83, A(30) ≈ $9458.73, A(35) ≈ $10519.05

� It will take approximately 33 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 116.91. This means that the investment is growing at an average rate
of $116.91 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 221.17. This means that
the investment is growing at an average rate of $221.17 per year at this point.

8. P = 2000
e0.0025·3 ≈ $1985.06

9. P = 5000

(1+ 0.0225
12 )

12·10 ≈ $3993.42

10. (a) A(8) = 2000
(
1 + 0.0025

12

)12·8 ≈ $2040.40

(b) t =
ln(2)

12 ln
(
1 + 0.0025

12

) ≈ 277.29 years

(c) P =
2000(

1 + 0.0025
12

)36 ≈ $1985.06

11. (a) A(8) = 2000
(
1 + 0.0225

12

)12·8 ≈ $2394.03

(b) t =
ln(2)

12 ln
(
1 + 0.0225

12

) ≈ 30.83 years

(c) P =
2000(

1 + 0.0225
12

)36 ≈ $1869.57

(d)
(
1 + 0.0225

12

)12 ≈ 1.0227 so the APY is 2.27%

12. A(3) = 5000e0.299·3 ≈ $12, 226.18, A(6) = 5000e0.299·6 ≈ $30, 067.29

14. � k = ln(1/2)
5.27 ≈ −0.1315

� A(t) = 50e−0.1315t

� t = ln(0.1)
−0.1315 ≈ 17.51 years.

15. � k = ln(1/2)
14 ≈ −0.0495

� A(t) = 2e−0.0495t

� t = ln(0.1)
−0.0495 ≈ 46.52 days.
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16. � k = ln(1/2)
27.7 ≈ −0.0250

� A(t) = 75e−0.0250t

� t = ln(0.1)
−0.025 ≈ 92.10 days.

17. � k = ln(1/2)
432.7 ≈ −0.0016

� A(t) = 0.29e−0.0016t

� t = ln(0.1)
−0.0016 ≈ 1439.11 years.

18. � k = ln(1/2)
704 ≈ −0.0010

� A(t) = e−0.0010t

� t = ln(0.1)
−0.0010 ≈ 2302.58 million years, or 2.30 billion years.

19. t = ln(0.1)
k = − ln(10)

k 20. V (t) = 25eln( 4
5)t ≈ 25e−0.22314355t

21. (a) G(0) = 9743.77 This means that the GDP of the US in 2000 was $9743.77 billion dollars.

(b) G(7) = 13963.24 and G(10) = 16291.25, so the model predicted a GDP of $13, 963.24
billion in 2007 and $16, 291.25 billion in 2010.

22. (a) D(0) = 15, so the tumor was 15 millimeters in diameter when it was first detected.

(b) t = ln(2)
0.0277 ≈ 25 days.

23. (a) k = ln(2)
20 ≈ 0.0346

(b) N(t) = 1000e0.0346t

(c) t = ln(9)
0.0346 ≈ 63 minutes

24. (a) k = 1
2

ln(6)
2.5 ≈ 0.4377

(b) N(t) = 2.5e0.4377t

(c) t = ln(2)
0.4377 ≈ 1.58 hours

25. N0 = 52, k = 1
3 ln

(
118
52

)
≈ 0.2731, N(t) = 52e0.2731t. N(6) ≈ 268.

26. N0 = 2649, k = 1
60 ln

(
7272
2649

)
≈ 0.0168, N(t) = 2649e0.0168t. N(150) ≈ 32923, so the population

of Painesville in 2010 based on this model would have been 32,923.

27. (a) P (0) = 120
4.167 ≈ 29. There are 29 Sasquatch in Bigfoot County in 2010.

(b) P (3) = 120
1+3.167e−0.05(3) ≈ 32 Sasquatch.

(c) t = 20 ln(3.167) ≈ 23 years.

(d) As t → ∞, P (t) → 120. As time goes by, the Sasquatch Population in Bigfoot County
will approach 120. Graphically, y = P (x) has a horizontal asymptote y = 120.

28. (a) A(t) = Ne
−
(

ln(2)
5730

)
t ≈ Ne−0.00012097t

(b) A(20000) ≈ 0.088978 ·N so about 8.9% remains

(c) t ≈ ln(.42)

−0.00012097
≈ 7171 years old

29. A(t) = 2.3e−0.0138629t
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31. (a) T (t) = 75 + 105e−0.005005t

(b) The roast would have cooled to 140◦F in about 95 minutes.

32. From the graph, it appears that as x→ 0+, y →∞. This is due to the presence of the ln(x)
term in the function. This means that Fritzy will never catch Chewbacca, which makes sense
since Chewbacca has a head start and Fritzy only runs as fast as he does.

y(x) = 1
4x

2 − 1
4 ln(x)− 1

4

33. The steady state current is 2 amps.

36. The linear regression on the data below is y = 1.74899x+ 0.70739 with r2 ≈ 0.999995. This
is an excellent fit.
x 1 2 3 4 5 6 7 8 9 10
ln(N(x)) 2.4849 4.1897 5.9454 7.6967 9.4478 11.1988 12.9497 14.7006 16.4523 18.2025

N(x) = 2.02869(5.74879)x = 2.02869e1.74899x with r2 ≈ 0.999995. This is also an excellent fit
and corresponds to our linearized model because ln(2.02869) ≈ 0.70739.

37. (a) The calculator gives: y = 2895.06(1.0147)x. Graphing this along with our answer from
Exercise 26 over the interval [0, 60] shows that they are pretty close. From this model,
y(150) ≈ 25840 which once again overshoots the actual data value.

(b) P (150) ≈ 18717, so this model predicts 17,914 people in Painesville in 2010, a more
conservative number than was recorded in the 2010 census. As t → ∞, P (t) → 18691.
So the limiting population of Painesville based on this model is 18,691 people.

38. (a) y =
242526

1 + 874.62e−0.07113x
, where x is the number of years since 1860.

(b) The plot of the data and the curve is below.

(c) y(140) ≈ 232889, so this model predicts 232,889 people in Lake County in 2010.

(d) As x→∞, y → 242526, so the limiting population of Lake County based on this model
is 242,526 people.



494 Exponential and Logarithmic Functions



Chapter 7

Hooked on Conics

7.1 Introduction to Conics

In this chapter, we study the Conic Sections - literally ‘sections of a cone’. Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.
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Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.

http://clem.mscd.edu/~talmanl/HTML/ConicSections.html
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If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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7.2 Circles

Recall from Geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 7.1. A circle with center (h, k) and radius r > 0 is the set of all points (x, y) in the
plane whose distance to (h, k) is r.

(h, k)

r

(x, y)

From the picture, we see that a point (x, y) is on the circle if and only if its distance to (h, k) is r.
We express this relationship algebraically using the Distance Formula, Equation 1.1, as

r =
√

(x− h)2 + (y − k)2

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 7.1. The Standard Equation of a Circle: The equation of a circle with center
(h, k) and radius r > 0 is (x− h)2 + (y − k)2 = r2.

Example 7.2.1. Write the standard equation of the circle with center (−2, 3) and radius 5.

Solution. Here, (h, k) = (−2, 3) and r = 5, so we get

(x− (−2))2 + (y − 3)2 = (5)2

(x+ 2)2 + (y − 3)2 = 25

Example 7.2.2. Graph (x+ 2)2 + (y − 1)2 = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 7.1, we have that x+ 2 is x−h, so h = −2
and y − 1 is y − k so k = 1. This tells us that our center is (−2, 1). Furthermore, r2 = 4, so r = 2.
Thus we have a circle centered at (−2, 1) with a radius of 2. Graphing gives us
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x

y

−4 −3 −2 −1 1

−1

1

2

3

4

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x+ 2)2 + (y − 1)2 = 4, we’d be contending with x2 + 4x+ y2 − 2y + 1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 7.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 7.2.3. Complete the square to find the center and radius of 3x2− 6x+ 3y2 + 4y− 4 = 0.

Solution.

3x2 − 6x+ 3y2 + 4y − 4 = 0

3x2 − 6x+ 3y2 + 4y = 4 add 4 to both sides

3
(
x2 − 2x

)
+ 3

(
y2 +

4

3
y

)
= 4 factor out leading coefficients

3
(
x2 − 2x+ 1

)
+ 3

(
y2 +

4

3
y +

4

9

)
= 4 + 3(1) + 3

(
4

9

)
complete the square in x, y

3(x− 1)2 + 3

(
y +

2

3

)2

=
25

3
factor

(x− 1)2 +

(
y +

2

3

)2

=
25

9
divide both sides by 3

From Equation 7.1, we identify x− 1 as x− h, so h = 1, and y+ 2
3 as y− k, so k = −2

3 . Hence, the
center is (h, k) =

(
1,−2

3

)
. Furthermore, we see that r2 = 25

9 so the radius is r = 5
3 .



500 Hooked on Conics

It is possible to obtain equations like (x− 3)2 + (y+ 1)2 = 0 or (x− 3)2 + (y+ 1)2 = −1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 1.2, in conjunction with the ideas presented so far in this section.

Example 7.2.4. Write the standard equation of the circle which has (−1, 3) and (2, 4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

x

y

(h, k)

r

−2 −1 1 2 3

1

2

3

4

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 1.2 gives us

(h, k) =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
−1 + 2

2
,
3 + 4

2

)
=

(
1

2
,
7

2

)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

r =
1

2

√
(x2 − x1)

2 + (y2 − y1)
2

=
1

2

√
(2− (−1))2 + (4− 3)2

=
1

2

√
32 + 12

=

√
10

2

Finally, since

(√
10

2

)2

=
10

4
, our answer becomes

(
x− 1

2

)2

+

(
y − 7

2

)2

=
10

4
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We close this section with the most important1 circle in all of mathematics: the Unit Circle.

Definition 7.2. The Unit Circle is the circle centered at (0, 0) with a radius of 1. The
standard equation of the Unit Circle is x2 + y2 = 1.

Example 7.2.5. Find the points on the unit circle with y-coordinate

√
3

2
.

Solution. We replace y with

√
3

2
in the equation x2 + y2 = 1 to get

x2 + y2 = 1

x2 +

(√
3

2

)2

= 1

3

4
+ x2 = 1

x2 =
1

4

x = ±
√

1

4

x = ±1

2

Our final answers are

(
1

2
,

√
3

2

)
and

(
−1

2
,

√
3

2

)
.

1While this may seem like an opinion, it is indeed a fact. See Chapters 10 and 11 for details.
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7.2.1 Exercises

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center (−1,−5), radius 10 2. Center (4,−2), radius 3

3. Center
(
−3, 7

13

)
, radius 1

2 4. Center (5,−9), radius ln(8)

5. Center
(
−e,
√

2
)
, radius π 6. Center (π, e2), radius 3

√
91

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify
the center and the radius or explain why the equation does not represent a circle.

7. x2 − 4x+ y2 + 10y = −25 8. −2x2 − 36x− 2y2 − 112 = 0

9. x2 + y2 + 8x− 10y − 1 = 0 10. x2 + y2 + 5x− y − 1 = 0

11. 4x2 + 4y2 − 24y + 36 = 0 12. x2 + x+ y2 − 6
5y = 1

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.

13. center (3, 5), passes through (−1,−2) 14. center (3, 6), passes through (−1, 4)

15. endpoints of a diameter: (3, 6) and (−1, 4) 16. endpoints of a diameter:
(

1
2 , 4
)
,
(

3
2 ,−1

)
17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot

tall platform making its overall height is 136 feet.2 Find an equation for the wheel assuming
that its center lies on the y-axis and that the ground is the x-axis.

18. Verify that the following points lie on the Unit Circle: (±1, 0), (0,±1),
(
±
√

2
2 ,±

√
2

2

)
,
(
±1

2 ,±
√

3
2

)
and

(
±
√

3
2 ,±

1
2

)
19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 7.1,

from the equation of the Unit Circle, x2 + y2 = 1 using the transformations discussed in
Section 1.7. (Thus every circle is just a few transformations away from the Unit Circle.)

20. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how the transformations is Section 1.7 can be used to produce a function whose graph
is either the top or bottom of an arbitrary circle.

21. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.

http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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7.2.2 Answers

1. (x+ 1)2 + (y + 5)2 = 100

x

y

−5

−11 −1 9

−15

5

2. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

3. (x+ 3)2 +
(
y − 7

13

)2
= 1

4

x

y

− 7
2
−3 − 5

2

1
26

7
13

27
26

4. (x− 5)2 + (y + 9)2 = (ln(8))2

x
y

5− ln(8) 5 5 + ln(8)

−9− ln(8)

−9

−9 + ln(8)

5. (x+ e)2 +
(
y −
√

2
)2

= π2

x

y

−e− π −e −e + π

√
2− π

√
2

√
2 + π

6. (x− π)2 +
(
y − e2

)2
= 91

2
3

x

y

π − 3√91
π

π + 3√91

e2 − 3√91

e2

e2 + 3√91
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7. (x− 2)2 + (y + 5)2 = 4
Center (2,−5), radius r = 2

8. (x+ 9)2 + y2 = 25
Center (−9, 0), radius r = 5

9. (x+ 4)2 + (y − 5)2 = 42
Center (−4, 5), radius r =

√
42

10.
(
x+ 5

2

)2
+
(
y − 1

2

)2
= 30

4

Center
(
−5

2 ,
1
2

)
, radius r =

√
30
2

11. x2 + (y − 3)2 = 0
This is not a circle.

12.
(
x+ 1

2

)2
+
(
y − 3

5

)2
= 161

100

Center
(
−1

2 ,
3
5

)
, radius r =

√
161
10

13. (x− 3)2 + (y − 5)2 = 65 14. (x− 3)2 + (y − 6)2 = 20

15. (x− 1)2 + (y − 5)2 = 5 16. (x− 1)2 +
(
y − 3

2

)2
= 13

2

17. x2 + (y − 72)2 = 4096
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7.3 Parabolas

We have already learned that the graph of a quadratic function f(x) = ax2 + bx + c (a 6= 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 7.3. Let F be a point in the plane and D be a line not containing F . A parabola is
the set of all points equidistant from F and D. The point F is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

F

D

V

Each dashed line from the point F to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied in Section 2.3.
Let p denote the directed1 distance from the vertex to the focus, which by definition is the same as
the distance from the vertex to the directrix. For simplicity, assume that the vertex is (0, 0) and
that the parabola opens upwards. Hence, the focus is (0, p) and the directrix is the line y = −p.
Our picture becomes

(0, p)

x

y

y = −p

(x, y)

(x,−p)

(0, 0)

From the definition of parabola, we know the distance from (0, p) to (x, y) is the same as the
distance from (x,−p) to (x, y). Using the Distance Formula, Equation 1.1, we get

1We’ll talk more about what ‘directed’ means later.
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√
(x− 0)2 + (y − p)2 =

√
(x− x)2 + (y − (−p))2√

x2 + (y − p)2 =
√

(y + p)2

x2 + (y − p)2 = (y + p)2 square both sides

x2 + y2 − 2py + p2 = y2 + 2py + p2 expand quantities

x2 = 4py gather like terms

Solving for y yields y = x2

4p , which is a quadratic function of the form found in Equation 2.4 with

a = 1
4p and vertex (0, 0).

We know from previous experience that if the coefficient of x2 is negative, the parabola opens
downwards. In the equation y = x2

4p this happens when p < 0. In our formulation, we say that p is
a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,
the focus is below the vertex. The focal length of a parabola is |p|.

If we choose to place the vertex at an arbitrary point (h, k), we arrive at the following formula
using either transformations from Section 1.7 or re-deriving the formula from Definition 7.3.

Equation 7.2. The Standard Equation of a Verticala Parabola: The equation of a
(vertical) parabola with vertex (h, k) and focal length |p| is

(x− h)2 = 4p(y − k)

If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

aThat is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 7.3.1. Graph (x+ 1)2 = −8(y − 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.2. Here, x − h is x + 1 so h = −1,
and y − k is y − 3 so k = 3. Hence, the vertex is (−1, 3). We also see that 4p = −8 so p = −2.
Since p < 0, the focus will be below the vertex and the parabola will open downwards.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

1

2

3

4

5
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The distance from the vertex to the focus is |p| = 2, which means the focus is 2 units below the
vertex. From (−1, 3), we move down 2 units and find the focus at (−1, 1). The directrix, then, is
2 units above the vertex, so it is the line y = 5.

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.2 The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

F

the latus rectum

D

V

It turns out3 that the length of the latus rectum, called the focal diameter of the parabola is |4p|,
which, in light of Equation 7.2, is easy to find. In our last example, for instance, when graphing
(x + 1)2 = −8(y − 3), we can use the fact that the focal diameter is | − 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 7.3.2. Find the standard form of the parabola with focus (2, 1) and directrix y = −4.

Solution. Sketching the data yields,

x

y

The vertex lies on this vertical line

midway between the focus and the directrix

−1 1 2 3

−3

−2

−1

1

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an x-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1− (−4) = 5,
which means the vertex lies 5

2 units (halfway) below the focus. Starting at (2, 1) and moving down
5/2 units leaves us at (2,−3/2), which is our vertex. Since the parabola opens upwards, we know
p is positive. Thus p = 5/2. Plugging all of this data into Equation 7.2 give us

(x− 2)2 = 4

(
5

2

)(
y −

(
−3

2

))
(x− 2)2 = 10

(
y +

3

2

)

If we interchange the roles of x and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices4 of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex, as seen below.

F

D

V

Equation 7.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y − k)2 = 4p(x− h)

If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

4plural of ‘directrix’
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Example 7.3.3. Graph (y − 2)2 = 12(x+ 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.3. Here, x − h is x + 1 so h = −1,
and y − k is y − 2 so k = 2. Hence, the vertex is (−1, 2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (−1, 2) and move right 3 units, we arrive at the focus (2, 2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (−1, 2), we’d be on the vertical line
x = −4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

x

y

−5 −4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

5

6

7

8

As with circles, not all parabolas will come to us in the forms in Equations 7.2 or 7.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-
squared variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.

Example 7.3.4. Consider the equation y2 + 4y + 8x = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need a perfect square (in this case, using y) on the left-hand side of the equation
and factor out the coefficient of the non-squared variable (in this case, the x) on the other.
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y2 + 4y + 8x = 4

y2 + 4y = −8x+ 4

y2 + 4y + 4 = −8x+ 4 + 4 complete the square in y only

(y + 2)2 = −8x+ 8 factor

(y + 2)2 = −8(x− 1)

Now that the equation is in the form given in Equation 7.3, we see that x−h is x−1 so h = 1, and
y − k is y + 2 so k = −2. Hence, the vertex is (1,−2). We also see that 4p = −8 so that p = −2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1,−2) and move left 2 units, we arrive at the focus (−1,−2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1,−2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

1

2

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.



7.3 Parabolas 511

Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

F

Example 7.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution.
If the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola suggested
to us by this data. For simplicity, we’ll assume the vertex is (0, 0) and the parabola opens upwards.
Our standard form for such a parabola is x2 = 4py. Since the focus is 2 units above the vertex, we
know p = 2, so we have x2 = 8y. Visually,

?

(6, y)

y

x

12 units wide

−6 6

2

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = 36

8 = 9
2 = 4.5. Hence, the dish will be 4.5 feet deep.
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7.3.1 Exercises

In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix.
Include the endpoints of the latus rectum in your sketch.

1. (x− 3)2 = −16y 2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
3. (y − 2)2 = −12(x+ 3) 4. (y + 4)2 = 4x

5. (x− 1)2 = 4(y + 3) 6. (x+ 2)2 = −20(y − 5)

7. (y − 4)2 = 18(x− 2) 8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

9. y2 − 10y − 27x+ 133 = 0 10. 25x2 + 20x+ 5y − 1 = 0

11. x2 + 2x− 8y + 49 = 0 12. 2y2 + 4y + x− 8 = 0

13. x2 − 10x+ 12y + 1 = 0 14. 3y2 − 27y + 4x+ 211
4 = 0

In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

15. Vertex (7, 0), focus (0, 0) 16. Focus (10, 1), directrix x = 5

17. Vertex (−8,−9); (0, 0) and (−16, 0) are
points on the curve

18. The endpoints of latus rectum are (−2,−7)
and (4,−7)

19. The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

20. A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.5 If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where should the receiver be placed to maximize reception?

21. A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch.

22. A popular novelty item is the ‘mirage bowl.’ Follow this link to see another startling appli-
cation of the reflective property of the parabola.

23. With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’

http://spie.org/etop/2007/etop07methodsV.pdf
http://www.astro.ubc.ca/LMT/lzt/
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7.3.2 Answers

1. (x− 3)2 = −16y

Vertex (3, 0)

Focus (3,−4)

Directrix y = 4

Endpoints of latus rectum (−5,−4), (11,−4)
x

y

−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10 11

−4

−3

−2

−1

1

2

3

4

2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
Vertex

(
− 7

3 ,−
5
2

)
Focus

(
− 7

3 ,−2
)

Directrix y = −3

Endpoints of latus rectum
(
− 10

3 ,−2
)
,
(
− 4

3 ,−2
)

x

y

−5 −4 −3 −2 −1

−3

−2

−1

1

2

3. (y − 2)2 = −12(x+ 3)

Vertex (−3, 2)

Focus (−6, 2)

Directrix x = 0

Endpoints of latus rectum (−6, 8), (−6,−4)

x

y

−7−6−5−4−3−2−1

−4

−3

−2

−1

1

2

3

4

5

6

7

8
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4. (y + 4)2 = 4x

Vertex (0,−4)

Focus (1,−4)

Directrix x = −1

Endpoints of latus rectum (1,−2), (1,−6)

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

5. (x− 1)2 = 4(y + 3)

Vertex (1,−3)

Focus (1,−2)

Directrix y = −4

Endpoints of latus rectum (3,−2), (−1,−2)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

6. (x+ 2)2 = −20(y − 5)

Vertex (−2, 5)

Focus (−2, 0)

Directrix y = 10

Endpoints of latus rectum (−12, 0), (8, 0)

x

y

−12 −10 −8 −6 −4 −2 2 4 6 8

1

2

3

4

5

6

7

8

9

10

7. (y − 4)2 = 18(x− 2)

Vertex (2, 4)

Focus
(
13
2 , 4

)
Directrix x = − 5

2

Endpoints of latus rectum
(
13
2 ,−5

)
,
(
13
2 , 13

)

x

y

−1 1 2 3 4 5 6 7

−5

−3

−1

1

3

5

7

9

11

13
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8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
Vertex

(
− 9

2 ,−
3
2

)
Focus

(
− 25

4 ,−
3
2

)
Directrix x = − 11

4

Endpoints of latus rectum
(
− 25

4 , 2
)
,
(
− 25

4 ,−5
) x

y

−5 −4 −3 −2 −1

−5

−4

−3

−2

−1

1

2

9. (y − 5)2 = 27(x− 4)
Vertex (4, 5)
Focus

(
43
4 , 5

)
Directrix x = −11

4

10.
(
x+ 2

5

)2
= −1

5(y − 1)
Vertex

(
−2

5 , 1
)

Focus
(
−2

5 ,
19
20

)
Directrix y = 21

20

11. (x+ 1)2 = 8(y − 6)
Vertex (−1, 6)
Focus (−1, 8)
Directrix y = 4

12. (y + 1)2 = −1
2(x− 10)

Vertex (10,−1)
Focus

(
79
8 ,−1

)
Directrix x = 81

8

13. (x− 5)2 = −12(y − 2)
Vertex (5, 2)
Focus (5,−1)
Directrix y = 5

14.
(
y − 9

2

)2
= −4

3(x− 2)
Vertex

(
2, 9

2

)
Focus

(
5
3 ,

9
2

)
Directrix x = 7

3

15. y2 = −28(x− 7) 16. (y − 1)2 = 10
(
x− 15

2

)
17. (x+ 8)2 = 64

9 (y + 9) 18. (x− 1)2 = 6
(
y + 17

2

)
or

(x− 1)2 = −6
(
y + 11

2

)
19. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by

Carl himself!)

20. The receiver should be placed 5.0625 centimeters from the vertex of the cross section of the
antenna.

21. The arch can be modeled by x2 = −(y − 9) or y = 9− x2. One foot in from the base of the
arch corresponds to either x = ±2, so the height is y = 9− (±2)2 = 5 feet.
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7.4 Ellipses

In the definition of a circle, Definition 7.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 7.4. Given two distinct points F1 and F2 in the plane and a fixed distance d, an
ellipse is the set of all points (x, y) in the plane such that the sum of each of the distances from
F1 and F2 to (x, y) is d. The points F1 and F2 are called the focia of the ellipse.

athe plural of ‘focus’

(x, y)

d1 d2

F1 F2

d1 + d2 = d for all (x, y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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F1 F2

V2V1

C

Major Axis

M
in

o
r

A
x
is

An ellipse with center C; foci F1, F2; and vertices V1, V2

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0, 0), its major axis along the x-axis, and has foci (c, 0) and (−c, 0)
and vertices (−a, 0) and (a, 0). We will label the y-intercepts of the ellipse as (0, b) and (0,−b) (We
assume a, b, and c are all positive numbers.) Schematically,

(−c, 0) (c, 0)(−a, 0) (a, 0)

(0, b)

(0,−b)

(x, y)

x

y

Note that since (a, 0) is on the ellipse, it must satisfy the conditions of Definition 7.4. That is, the
distance from (−c, 0) to (a, 0) plus the distance from (c, 0) to (a, 0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0) + distance from (c, 0) to (a, 0) = d

(a+ c) + (a− c) = d

2a = d
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In other words, the fixed distance d mentioned in the definition of the ellipse is none other than
the length of the major axis. We now use that fact (0, b) is on the ellipse, along with the fact that
d = 2a to get

distance from (−c, 0) to (0, b) + distance from (c, 0) to (0, b) = 2a√
(0− (−c))2 + (b− 0)2 +

√
(0− c)2 + (b− 0)2 = 2a√
b2 + c2 +

√
b2 + c2 = 2a

2
√
b2 + c2 = 2a√
b2 + c2 = a

From this, we get a2 = b2 + c2, or b2 = a2 − c2, which will prove useful later. Now consider a point
(x, y) on the ellipse. Applying Definition 7.4, we get

distance from (−c, 0) to (x, y) + distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 +

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

In order to make sense of this situation, we need to make good use of Intermediate Algebra.√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a√
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2(√

(x+ c)2 + y2
)2

=
(

2a−
√

(x− c)2 + y2
)2

(x+ c)2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + (x− c)2 + y2

4a
√

(x− c)2 + y2 = 4a2 + (x− c)2 − (x+ c)2

4a
√

(x− c)2 + y2 = 4a2 − 4cx

a
√

(x− c)2 + y2 = a2 − cx(
a
√

(x− c)2 + y2
)2

=
(
a2 − cx

)2
a2
(
(x− c)2 + y2

)
= a4 − 2a2cx+ c2x2

a2x2 − 2a2cx+ a2c2 + a2y2 = a4 − 2a2cx+ c2x2

a2x2 − c2x2 + a2y2 = a4 − a2c2(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
We are nearly finished. Recall that b2 = a2 − c2 so that(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
b2x2 + a2y2 = a2b2

x2

a2
+
y2

b2
= 1
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This equation is for an ellipse centered at the origin. To get the formula for the ellipse centered at
(h, k), we could use the transformations from Section 1.7 or re-derive the equation using Definition
7.4 and the distance formula to obtain the formula below.

Equation 7.4. The Standard Equation of an Ellipse: For positive unequal numbers a and
b, the equation of an ellipse with center (h, k) is

(x− h)2

a2
+

(y − k)2

b2
= 1

Some remarks about Equation 7.4 are in order. First note that the values a and b determine
how far in the x and y directions, respectively, one counts from the center to arrive at points on
the ellipse. Also take note that if a > b, then we have an ellipse whose major axis is horizontal,
and hence, the foci lie to the left and right of the center. In this case, as we’ve seen in the
derivation, the distance from the center to the focus, c, can be found by c =

√
a2 − b2. If b > a,

the roles of the major and minor axes are reversed, and the foci lie above and below the center.
In this case, c =

√
b2 − a2. In either case, c is the distance from the center to each focus, and

c =
√

bigger denominator− smaller denominator. Finally, it is worth mentioning that if we take
the standard equation of a circle, Equation 7.1, and divide both sides by r2, we get

Equation 7.5. The Alternate Standard Equation of a Circle: The equation of a circle
with center (h, k) and radius r > 0 is

(x− h)2

r2
+

(y − k)2

r2
= 1

Notice the similarity between Equation 7.4 and Equation 7.5. Both equations involve a sum of
squares equal to 1; the difference is that with a circle, the denominators are the same, and with an
ellipse, they are different. If we take a transformational approach, we can consider both Equations
7.4 and 7.5 as shifts and stretches of the Unit Circle x2 + y2 = 1 in Definition 7.2. Replacing x
with (x− h) and y with (y− k) causes the usual horizontal and vertical shifts. Replacing x with x

a
and y with y

b causes the usual vertical and horizontal stretches. In other words, it is perfectly fine
to think of an ellipse as the deformation of a circle in which the circle is stretched farther in one
direction than the other.1

Example 7.4.1. Graph (x+1)2

9 + (y−2)2

25 = 1. Find the center, the lines which contain the major
and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. We see that this equation is in the standard form of Equation 7.4. Here x− h is x+ 1
so h = −1, and y−k is y−2 so k = 2. Hence, our ellipse is centered at (−1, 2). We see that a2 = 9
so a = 3, and b2 = 25 so b = 5. This means that we move 3 units left and right from the center
and 5 units up and down from the center to arrive at points on the ellipse. As an aid to sketching,
we draw a rectangle matching this description, called a guide rectangle, and sketch the ellipse
inside this rectangle as seen below on the left.

1This was foreshadowed in Exercise 19 in Section 7.2.
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x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

Since we moved farther in the y direction than in the x direction, the major axis will lie along
the vertical line x = −1, which means the minor axis lies along the horizontal line, y = 2. The
vertices are the points on the ellipse which lie along the major axis so in this case, they are the
points (−1, 7) and (−1,−3), and the endpoints of the minor axis are (−4, 2) and (2, 2). (Notice
these points are the four points we used to draw the guide rectangle.) To find the foci, we find
c =
√

25− 9 =
√

16 = 4, which means the foci lie 4 units from the center. Since the major axis is
vertical, the foci lie 4 units above and below the center, at (−1,−2) and (−1, 6). Plotting all this
information gives the graph seen above on the right.

Example 7.4.2. Find the equation of the ellipse with foci (2, 1) and (4, 1) and vertex (0, 1).

Solution. Plotting the data given to us, we have

x

y

1 2 3 4 5

1

From this sketch, we know that the major axis is horizontal, meaning a > b. Since the center is the
midpoint of the foci, we know it is (3, 1). Since one vertex is (0, 1) we have that a = 3, so a2 = 9.
All that remains is to find b2. Since the foci are 1 unit away from the center, we know c = 1. Since
a > b, we have c =

√
a2 − b2, or 1 =

√
9− b2, so b2 = 8. Substituting all of our findings into the

equation (x−h)2

a2 + (y−k)2

b2
= 1, we get our final answer to be (x−3)2

9 + (y−1)2

8 = 1.
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As with circles and parabolas, an equation may be given which is an ellipse, but isn’t in the standard
form of Equation 7.4. In those cases, as with circles and parabolas before, we will need to massage
the given equation into the standard form.

To Write the Equation of an Ellipse in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square in both variables as needed.

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1.

Example 7.4.3. Graph x2 + 4y2− 2x+ 24y+ 33 = 0. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. Since we have a sum of squares and the squared terms have unequal coefficients, it’s a
good bet we have an ellipse on our hands.2 We need to complete both squares, and then divide, if
necessary, to get the right-hand side equal to 1.

x2 + 4y2 − 2x+ 24y + 33 = 0

x2 − 2x+ 4y2 + 24y = −33

x2 − 2x+ 4
(
y2 + 6y

)
= −33(

x2 − 2x+ 1
)

+ 4
(
y2 + 6y + 9

)
= −33 + 1 + 4(9)

(x− 1)2 + 4(y + 3)2 = 4

(x− 1)2 + 4(y + 3)2

4
=

4

4

(x− 1)2

4
+ (y + 3)2 = 1

(x− 1)2

4
+

(y + 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.4, we see that x−h is x− 1 so h = 1,
and y−k is y+ 3 so k = −3. Hence, our ellipse is centered at (1,−3). We see that a2 = 4 so a = 2,
and b2 = 1 so b = 1. This means we move 2 units left and right from the center and 1 unit up and
down from the center to arrive at points on the ellipse. Since we moved farther in the x direction
than in the y direction, the major axis will lie along the horizontal line y = −3, which means the
minor axis lies along the vertical line x = 1. The vertices are the points on the ellipse which lie
along the major axis so in this case, they are the points (−1,−3) and (3,−3), and the endpoints
of the minor axis are (1,−2) and (1,−4). To find the foci, we find c =

√
4− 1 =

√
3, which means

2The equation of a parabola has only one squared variable and the equation of a circle has two squared variables
with identical coefficients.
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the foci lie
√

3 units from the center. Since the major axis is horizontal, the foci lie
√

3 units to the
left and right of the center, at (1−

√
3,−3) and (1 +

√
3,−3). Plotting all of this information gives

x

y

−1 1 2 3 4

−4

−3

−2

−1

As you come across ellipses in the homework exercises and in the wild, you’ll notice they come in
all shapes in sizes. Compare the two ellipses below.

Certainly, one ellipse is more round than the other. This notion of ‘roundness’ is quantified below.

Definition 7.5. The eccentricity of an ellipse, denoted e, is the following ratio:

e =
distance from the center to a focus

distance from the center to a vertex

In an ellipse, the foci are closer to the center than the vertices, so 0 < e < 1. The ellipse above on
the left has eccentricity e ≈ 0.98; for the ellipse above on the right, e ≈ 0.66. In general, the closer
the eccentricity is to 0, the more ‘circular’ the ellipse; the closer the eccentricity is to 1, the more
‘eccentric’ the ellipse.

Example 7.4.4. Find the equation of the ellipse whose vertices are (±5, 0) with eccentricity e = 1
4 .

Solution. As before, we plot the data given to us

x

y
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From this sketch, we know that the major axis is horizontal, meaning a > b. With the vertices
located at (±5, 0), we get a = 5 so a2 = 25. We also know that the center is (0, 0) because the
center is the midpoint of the vertices. All that remains is to find b2. To that end, we use the fact
that the eccentricity e = 1

4 which means

e =
distance from the center to a focus

distance from the center to a vertex
=
c

a
=
c

5
=

1

4

from which we get c = 5
4 . To get b2, we use the fact that c =

√
a2 − b2, so 5

4 =
√

25− b2 from which

we get b2 = 375
16 . Substituting all of our findings into the equation (x−h)2

a2 + (y−k)2

b2
= 1, yields our

final answer x2

25 + 16y2

375 = 1.

As with parabolas, ellipses have a reflective property. If we imagine the dashed lines below repre-
senting sound waves, then the waves emanating from one focus reflect off the top of the ellipse and
head towards the other focus.

F1 F2

Such geometry is exploited in the construction of so-called ‘Whispering Galleries’. If a person
whispers at one focus, a person standing at the other focus will hear the first person as if they were
standing right next to them. We explore the Whispering Galleries in our last example.

Example 7.4.5. Jamie and Jason want to exchange secrets (terrible secrets) from across a crowded
whispering gallery. Recall that a whispering gallery is a room which, in cross section, is half of an
ellipse. If the room is 40 feet high at the center and 100 feet wide at the floor, how far from the
outer wall should each of them stand so that they will be positioned at the foci of the ellipse?

Solution. Graphing the data yields
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x

y

100 units wide

40 units tall

It’s most convenient to imagine this ellipse centered at (0, 0). Since the ellipse is 100 units wide

and 40 units tall, we get a = 50 and b = 40. Hence, our ellipse has the equation x2

502 + y2

402 = 1.

We’re looking for the foci, and we get c =
√

502 − 402 =
√

900 = 30, so that the foci are 30 units
from the center. That means they are 50 − 30 = 20 units from the vertices. Hence, Jason and
Jamie should stand 20 feet from opposite ends of the gallery.
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7.4.1 Exercises

In Exercises 1 - 8, graph the ellipse. Find the center, the lines which contain the major and minor
axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

1.
x2

169
+
y2

25
= 1 2.

x2

9
+
y2

25
= 1

3.
(x− 2)2

4
+

(y + 3)2

9
= 1 4.

(x+ 5)2

16
+

(y − 4)2

1
= 1

5.
(x− 1)2

10
+

(y − 3)2

11
= 1 6.

(x− 1)2

9
+

(y + 3)2

4
= 1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1 8.

(x− 4)2

8
+

(y − 2)2

18
= 1

In Exercises 9 - 14, put the equation in standard form. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

9. 9x2 + 25y2 − 54x− 50y − 119 = 0 10. 12x2 + 3y2 − 30y + 39 = 0

11. 5x2 + 18y2 − 30x+ 72y + 27 = 0 12. x2 − 2x+ 2y2 − 12y + 3 = 0

13. 9x2 + 4y2 − 4y − 8 = 0 14. 6x2 + 5y2 − 24x+ 20y + 14 = 0

In Exercises 15 - 20, find the standard form of the equation of the ellipse which has the given
properties.

15. Center (3, 7), Vertex (3, 2), Focus (3, 3)

16. Foci (0,±5), Vertices (0,±8).

17. Foci (±3, 0), length of the Minor Axis 10

18. Vertices (3, 2), (13, 2); Endpoints of the Minor Axis (8, 4), (8, 0)

19. Center (5, 2), Vertex (0, 2), eccentricity 1
2

20. All points on the ellipse are in Quadrant IV except (0,−9) and (8, 0). (One might also say
that the ellipse is “tangent to the axes” at those two points.)

21. Repeat Example 7.4.5 for a whispering gallery 200 feet wide and 75 feet tall.

22. An elliptical arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch. Compare your result
with your answer to Exercise 21 in Section 7.3.
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23. The Earth’s orbit around the sun is an ellipse with the sun at one focus and eccentricity
e ≈ 0.0167. The length of the semimajor axis (that is, half of the major axis) is defined
to be 1 astronomical unit (AU). The vertices of the elliptical orbit are given special names:
‘aphelion’ is the vertex farthest from the sun, and ‘perihelion’ is the vertex closest to the sun.
Find the distance in AU between the sun and aphelion and the distance in AU between the
sun and perihelion.

24. The graph of an ellipse clearly fails the Vertical Line Test, Theorem 1.1, so the equation of
an ellipse does not define y as a function of x. However, much like with circles and horizontal
parabolas, we can split an ellipse into a top half and a bottom half, each of which would
indeed represent y as a function of x. With the help of your classmates, use your calculator
to graph the ellipses given in Exercises 1 - 8 above. What difficulties arise when you plot
them on the calculator?

25. Some famous examples of whispering galleries include St. Paul’s Cathedral in London, Eng-
land, National Statuary Hall in Washington, D.C., and The Cincinnati Museum Center. With
the help of your classmates, research these whispering galleries. How does the whispering ef-
fect compare and contrast with the scenario in Example 7.4.5?

26. With the help of your classmates, research “extracorporeal shock-wave lithotripsy”. It uses
the reflective property of the ellipsoid to dissolve kidney stones.

http://www.stpauls.co.uk/
http://www.aoc.gov/cc/capitol/nat_stat_hall.cfm
http://www.cincymuseum.org/
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7.4.2 Answers

1.
x2

169
+
y2

25
= 1

Center (0, 0)
Major axis along y = 0
Minor axis along x = 0
Vertices (13, 0), (−13, 0)
Endpoints of Minor Axis (0,−5), (0, 5)
Foci (12, 0), (−12, 0)
e = 12

13

x

y

−13 −1 1 13

−5

−4

−3

−2

−1

1

2

3

4

5

2.
x2

9
+
y2

25
= 1

Center (0, 0)
Major axis along x = 0
Minor axis along y = 0
Vertices (0, 5), (0,−5)
Endpoints of Minor Axis (−3, 0), (3, 0)
Foci (0,−4), (0, 4)
e = 4

5

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

3.
(x− 2)2

4
+

(y + 3)2

9
= 1

Center (2,−3)
Major axis along x = 2
Minor axis along y = −3
Vertices (2, 0), (2,−6)
Endpoints of Minor Axis (0,−3), (4,−3)
Foci (2,−3 +

√
5), (2,−3−

√
5)

e =
√

5
3

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

4.
(x+ 5)2

16
+

(y − 4)2

1
= 1

Center (−5, 4)
Major axis along y = 4
Minor axis along x = −5
Vertices (−9, 4), (−1, 4)
Endpoints of Minor Axis (−5, 3), (−5, 5)
Foci (−5 +

√
15, 4), (−5−

√
15, 4)

e =
√

15
4 x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1

1

2

3

4

5
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5.
(x− 1)2

10
+

(y − 3)2

11
= 1

Center (1, 3)
Major axis along x = 1
Minor axis along y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Endpoints of the Minor Axis
(1−

√
10, 3), (1 +

√
10, 3)

Foci (1, 2), (1, 4)

e =
√

11
11

x

y

−2 −1 1 2 3 4

1

2

3

4

5

6

6.
(x− 1)2

9
+

(y + 3)2

4
= 1

Center (1,−3)
Major axis along y = −3
Minor axis along x = 1
Vertices (4,−3), (−2,−3)
Endpoints of the Minor Axis (1,−1), (1,−5)
Foci (1 +

√
5,−3), (1−

√
5,−3)

e =
√

5
3

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1

Center (−2, 5)
Major axis along x = −2
Minor axis along y = 5
Vertices (−2, 5 + 2

√
5), (−2, 5− 2

√
5)

Endpoints of the Minor Axis (−6, 5), (2, 5)
Foci (−2, 7), (−2, 3)

e =
√

5
5

x

y

−6 −5 −4 −3 −2 −1 1 2

1

2

3

4

5

6

7

8

9

10
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8.
(x− 4)2

8
+

(y − 2)2

18
= 1

Center (4, 2)
Major axis along x = 4
Minor axis along y = 2
Vertices (4, 2 + 3

√
2), (4, 2− 3

√
2)

Endpoints of the Minor Axis
(4− 2

√
2, 2), (4 + 2

√
2, 2)

Foci (4, 2 +
√

10), (4, 2−
√

10)

e =
√

5
3

x

y

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

9.
(x− 3)2

25
+

(y − 1)2

9
= 1

Center (3, 1)
Major Axis along y = 1
Minor Axis along x = 3
Vertices (8, 1), (−2, 1)
Endpoints of Minor Axis (3, 4), (3,−2)
Foci (7, 1), (−1, 1)
e = 4

5

10.
x2

3
+

(y − 5)2

12
= 1

Center (0, 5)
Major axis along x = 0
Minor axis along y = 5
Vertices (0, 5− 2

√
3), (0, 5 + 2

√
3)

Endpoints of Minor Axis (−
√

3, 5), (
√

3, 5)
Foci (0, 2), (0, 8)

e =
√

3
2

11.
(x− 3)2

18
+

(y + 2)2

5
= 1

Center (3,−2)
Major axis along y = −2
Minor axis along x = 3
Vertices (3− 3

√
2,−2), (3 + 3

√
2,−2)

Endpoints of Minor Axis (3,−2 +
√

5),
(3,−2−

√
5)

Foci (3−
√

13,−2), (3 +
√

13,−2)

e =
√

26
6

12.
(x− 1)2

16
+

(y − 3)2

8
= 1

Center (1, 3)
Major Axis along y = 3
Minor Axis along x = 1
Vertices (5, 3), (−3, 3)
Endpoints of Minor Axis (1, 3 + 2

√
2),

(1, 3− 2
√

2)
Foci (1 + 2

√
2, 3), (1− 2

√
2, 3)

e =
√

2
2
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13.
x2

1
+

4
(
y − 1

2

)2
9

= 1

Center
(
0, 1

2

)
Major Axis along x = 0 (the y-axis)
Minor Axis along y = 1

2
Vertices (0, 2), (0,−1)
Endpoints of Minor Axis

(
−1, 1

2

)
,
(
1, 1

2

)
Foci

(
0, 1+

√
5

2

)
,
(

0, 1−
√

5
2

)
e =

√
5

3

14.
(x− 2)2

5
+

(y + 2)2

6
= 1

Center (2,−2)
Major Axis along x = 2
Minor Axis along y = −2
Vertices

(
2,−2 +

√
6
)
, (2,−2−

√
6)

Endpoints of Minor Axis
(
2−
√

5,−2
)
,(

2 +
√

5,−2
)

Foci (2,−1), (2,−3)

e =
√

6
6

15.
(x− 3)2

9
+

(y − 7)2

25
= 1 16.

x2

39
+
y2

64
= 1

17.
x2

34
+
y2

25
= 1 18.

(x− 8)2

25
+

(y − 2)2

4
= 1

19.
(x− 5)2

25
+

4(y − 2)2

75
= 1 20.

(x− 8)2

64
+

(y + 9)2

81
= 1

21. Jamie and Jason should stand 100− 25
√

7 ≈ 33.86 feet from opposite ends of the gallery.

22. The arch can be modeled by the top half of x
2

9 + y2

81 = 1. One foot in from the base of the arch

corresponds to either x = ±2. Plugging in x = ±2 gives y = ±3
√

5 and since y represents a
height, we choose y = 3

√
5 ≈ 6.71 feet.

23. Distance from the sun to aphelion ≈ 1.0167 AU.
Distance from the sun to perihelion ≈ 0.9833 AU.
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7.5 Hyperbolas

In the definition of an ellipse, Definition 7.4, we fixed two points called foci and looked at points
whose distances to the foci always added to a constant distance d. Those prone to syntactical
tinkering may wonder what, if any, curve we’d generate if we replaced added with subtracted.
The answer is a hyperbola.

Definition 7.6. Given two distinct points F1 and F2 in the plane and a fixed distance d, a
hyperbola is the set of all points (x, y) in the plane such that the absolute value of the difference
of each of the distances from F1 and F2 to (x, y) is d. The points F1 and F2 are called the foci
of the hyperbola.

(x1, y1)

(x2, y2)

F1 F2

In the figure above:

the distance from F1 to (x1, y1)− the distance from F2 to (x1, y1) = d

and

the distance from F2 to (x2, y2)− the distance from F1 to (x2, y2) = d

Note that the hyperbola has two parts, called branches. The center of the hyperbola is the
midpoint of the line segment connecting the two foci. The transverse axis of the hyperbola is
the line segment connecting two opposite ends of the hyperbola which also contains the center and
foci. The vertices of a hyperbola are the points of the hyperbola which lie on the transverse axis.
In addition, we will show momentarily that there are lines called asymptotes which the branches
of the hyperbola approach for large x and y values. They serve as guides to the graph. In pictures,
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V2V1F1 F2

Transverse Axis

C

A hyperbola with center C; foci F1, F2; and vertices V1, V2 and asymptotes (dashed)

Before we derive the standard equation of the hyperbola, we need to discuss one further parameter,
the conjugate axis of the hyperbola. The conjugate axis of a hyperbola is the line segment
through the center which is perpendicular to the transverse axis and has the same length as the
line segment through a vertex which connects the asymptotes. In pictures we have

V2V1 C

C
o
n

ju
g
a
te

A
x
is

Note that in the diagram, we can construct a rectangle using line segments with lengths equal to
the lengths of the transverse and conjugate axes whose center is the center of the hyperbola and
whose diagonals are contained in the asymptotes. This guide rectangle, much akin to the one we
saw Section 7.4 to help us graph ellipses, will aid us in graphing hyperbolas.

Suppose we wish to derive the equation of a hyperbola. For simplicity, we shall assume that the
center is (0, 0), the vertices are (a, 0) and (−a, 0) and the foci are (c, 0) and (−c, 0). We label the
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endpoints of the conjugate axis (0, b) and (0,−b). (Although b does not enter into our derivation,
we will have to justify this choice as you shall see later.) As before, we assume a, b, and c are all
positive numbers. Schematically we have

x

y

(a, 0)(−a, 0)

(0, b)

(0,−b)

(−c, 0) (c, 0)

(x, y)

Since (a, 0) is on the hyperbola, it must satisfy the conditions of Definition 7.6. That is, the distance
from (−c, 0) to (a, 0) minus the distance from (c, 0) to (a, 0) must equal the fixed distance d. Since
all these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0)− distance from (c, 0) to (a, 0) = d

(a+ c)− (c− a) = d

2a = d

In other words, the fixed distance d from the definition of the hyperbola is actually the length of
the transverse axis! (Where have we seen that type of coincidence before?) Now consider a point
(x, y) on the hyperbola. Applying Definition 7.6, we get

distance from (−c, 0) to (x, y)− distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 −

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a

Using the same arsenal of Intermediate Algebra weaponry we used in deriving the standard formula
of an ellipse, Equation 7.4, we arrive at the following.1

1It is a good exercise to actually work this out.
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(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
What remains is to determine the relationship between a, b and c. To that end, we note that since
a and c are both positive numbers with a < c, we get a2 < c2 so that a2− c2 is a negative number.
Hence, c2 − a2 is a positive number. For reasons which will become clear soon, we re-write the
equation by solving for y2/x2 to get(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−
(
c2 − a2

)
x2 + a2y2 = −a2

(
c2 − a2

)
a2y2 =

(
c2 − a2

)
x2 − a2

(
c2 − a2

)
y2

x2
=

(
c2 − a2

)
a2

−
(
c2 − a2

)
x2

As x and y attain very large values, the quantity
(c2−a2)

x2 → 0 so that y2

x2 →
(c2−a2)

a2 . By setting

b2 = c2 − a2 we get y2

x2 → b2

a2 . This shows that y → ± b
ax as |x| grows large. Thus y = ± b

ax are the
asymptotes to the graph as predicted and our choice of labels for the endpoints of the conjugate
axis is justified. In our equation of the hyperbola we can substitute a2 − c2 = −b2 which yields(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−b2x2 + a2y2 = −a2b2

x2

a2
− y2

b2
= 1

The equation above is for a hyperbola whose center is the origin and which opens to the left and
right. If the hyperbola were centered at a point (h, k), we would get the following.

Equation 7.6. The Standard Equation of a Horizontala Hyperbola For positive numbers
a and b, the equation of a horizontal hyperbola with center (h, k) is

(x− h)2

a2
− (y − k)2

b2
= 1

aThat is, a hyperbola whose branches open to the left and right

If the roles of x and y were interchanged, then the hyperbola’s branches would open upwards and
downwards and we would get a ‘vertical’ hyperbola.

Equation 7.7. The Standard Equation of a Vertical Hyperbola For positive numbers a
and b, the equation of a vertical hyperbola with center (h, k) is:

(y − k)2

b2
− (x− h)2

a2
= 1

The values of a and b determine how far in the x and y directions, respectively, one counts from the
center to determine the rectangle through which the asymptotes pass. In both cases, the distance
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from the center to the foci, c, as seen in the derivation, can be found by the formula c =
√
a2 + b2.

Lastly, note that we can quickly distinguish the equation of a hyperbola from that of a circle or
ellipse because the hyperbola formula involves a difference of squares where the circle and ellipse
formulas both involve the sum of squares.

Example 7.5.1. Graph the equation (x−2)2

4 − y2

25 = 1. Find the center, the lines which contain the
transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

Solution. We first see that this equation is given to us in the standard form of Equation 7.6. Here
x − h is x − 2 so h = 2, and y − k is y so k = 0. Hence, our hyperbola is centered at (2, 0). We
see that a2 = 4 so a = 2, and b2 = 25 so b = 5. This means we move 2 units to the left and right
of the center and 5 units up and down from the center to arrive at points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
This yields the following set up.

x

y

−2 −1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Since the y2 term is being subtracted from the x2 term, we know that the branches of the hyperbola
open to the left and right. This means that the transverse axis lies along the x-axis. Hence, the
conjugate axis lies along the vertical line x = 2. Since the vertices of the hyperbola are where the
hyperbola intersects the transverse axis, we get that the vertices are 2 units to the left and right of
(2, 0) at (0, 0) and (4, 0). To find the foci, we need c =

√
a2 + b2 =

√
4 + 25 =

√
29. Since the foci

lie on the transverse axis, we move
√

29 units to the left and right of (2, 0) to arrive at (2−
√

29, 0)
(approximately (−3.39, 0)) and (2 +

√
29, 0) (approximately (7.39, 0)). To determine the equations

of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2, 0), as well
as the corners of guide rectangle, so they have slopes of ± b

a = ±5
2 . Using the point-slope equation
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of a line, Equation 2.2, yields y − 0 = ±5
2(x− 2), so we get y = 5

2x− 5 and y = −5
2x+ 5. Putting

it all together, we get

x

y

−3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Example 7.5.2. Find the equation of the hyperbola with asymptotes y = ±2x and vertices (±5, 0).

Solution. Plotting the data given to us, we have

x

y

−5 5

−5

5

This graph not only tells us that the branches of the hyperbola open to the left and to the right,

it also tells us that the center is (0, 0). Hence, our standard form is x2

a2 − y2

b2
= 1. Since the vertices

are (±5, 0), we have a = 5 so a2 = 25. In order to determine b2, we recall that the slopes of the
asymptotes are ± b

a . Since a = 5 and the slope of the line y = 2x is 2, we have that b
5 = 2, so

b = 10. Hence, b2 = 100 and our final answer is x2

25 −
y2

100 = 1.
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As with the other conic sections, an equation whose graph is a hyperbola may not be given in either
of the standard forms. To rectify that, we have the following.

To Write the Equation of a Hyperbola in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side

2. Complete the square in both variables as needed

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1

Example 7.5.3. Consider the equation 9y2−x2− 6x = 10. Put this equation in to standard form
and graph. Find the center, the lines which contain the transverse and conjugate axes, the vertices,
the foci, and the equations of the asymptotes.

Solution. We need only complete the square on x:

9y2 − x2 − 6x = 10

9y2 − 1
(
x2 + 6x

)
= 10

9y2 −
(
x2 + 6x+ 9

)
= 10− 1(9)

9y2 − (x+ 3)2 = 1

y2

1
9

− (x+ 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.7, we see that x−h is x+3 so h = −3,
and y− k is y so k = 0. Hence, our hyperbola is centered at (−3, 0). We find that a2 = 1 so a = 1,
and b2 = 1

9 so b = 1
3 . This means that we move 1 unit to the left and right of the center and 1

3
units up and down from the center to arrive at points on the guide rectangle. Since the x2 term
is being subtracted from the y2 term, we know the branches of the hyperbola open upwards and
downwards. This means the transverse axis lies along the vertical line x = −3 and the conjugate
axis lies along the x-axis. Since the vertices of the hyperbola are where the hyperbola intersects
the transverse axis, we get that the vertices are 1

3 of a unit above and below (−3, 0) at
(
−3, 1

3

)
and(

−3,−1
3

)
. To find the foci, we use

c =
√
a2 + b2 =

√
1

9
+ 1 =

√
10

3

Since the foci lie on the transverse axis, we move
√

10
3 units above and below (−3, 0) to arrive at(

−3,
√

10
3

)
and

(
−3,−

√
10
3

)
. To determine the asymptotes, recall that the asymptotes go through

the center of the hyperbola, (−3, 0), as well as the corners of guide rectangle, so they have slopes
of ± b

a = ±1
3 . Using the point-slope equation of a line, Equation 2.2, we get y = 1

3x + 1 and
y = −1

3x− 1. Putting it all together, we get
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x

y

−6 −1

1

−1

Hyperbolas can be used in so-called ‘trilateration,’ or ‘positioning’ problems. The procedure out-
lined in the next example is the basis of the (now virtually defunct) LOng Range Aid to Navigation
(LORAN for short) system.2

Example 7.5.4. Jeff is stationed 10 miles due west of Carl in an otherwise empty forest in an
attempt to locate an elusive Sasquatch. At the stroke of midnight, Jeff records a Sasquatch call
9 seconds earlier than Carl. If the speed of sound that night is 760 miles per hour, determine a
hyperbolic path along which Sasquatch must be located.

Solution. Since Jeff hears Sasquatch sooner, it is closer to Jeff than it is to Carl. Since the speed of
sound is 760 miles per hour, we can determine how much closer Sasquatch is to Jeff by multiplying

760
miles

hour
× 1 hour

3600 seconds
× 9 seconds = 1.9 miles

This means that Sasquatch is 1.9 miles closer to Jeff than it is to Carl. In other words, Sasquatch
must lie on a path where

(the distance to Carl)− (the distance to Jeff) = 1.9

This is exactly the situation in the definition of a hyperbola, Definition 7.6. In this case, Jeff
and Carl are located at the foci,3 and our fixed distance d is 1.9. For simplicity, we assume the
hyperbola is centered at (0, 0) with its foci at (−5, 0) and (5, 0). Schematically, we have

2GPS now rules the positioning kingdom. Is there still a place for LORAN and other land-based systems? Do
satellites ever malfunction?

3We usually like to be the center of attention, but being the focus of attention works equally well.

http://en.wikipedia.org/wiki/Trilateration
http://en.wikipedia.org/wiki/LORAN
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x

y

Jeff Carl
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3
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−1

1

2

3

4

5

6

We are seeking a curve of the form x2

a2 − y2

b2
= 1 in which the distance from the center to each focus

is c = 5. As we saw in the derivation of the standard equation of the hyperbola, Equation 7.6,
d = 2a, so that 2a = 1.9, or a = 0.95 and a2 = 0.9025. All that remains is to find b2. To that end,
we recall that a2 + b2 = c2 so b2 = c2 − a2 = 25 − 0.9025 = 24.0975. Since Sasquatch is closer to

Jeff than it is to Carl, it must be on the western (left hand) branch of x2

0.9025 −
y2

24.0975 = 1.

In our previous example, we did not have enough information to pin down the exact location of
Sasquatch. To accomplish this, we would need a third observer.

Example 7.5.5. By a stroke of luck, Kai was also camping in the woods during the events of the
previous example. He was located 6 miles due north of Jeff and heard the Sasquatch call 18 seconds
after Jeff did. Use this added information to locate Sasquatch.

Solution. Kai and Jeff are now the foci of a second hyperbola where the fixed distance d can be
determined as before

760
miles

hour
× 1 hour

3600 seconds
× 18 seconds = 3.8 miles

Since Jeff was positioned at (−5, 0), we place Kai at (−5, 6). This puts the center of the new
hyperbola at (−5, 3). Plotting Kai’s position and the new center gives us the diagram below on

the left. The second hyperbola is vertical, so it must be of the form (y−3)2

b2
− (x+5)2

a2 = 1. As before,
the distance d is the length of the major axis, which in this case is 2b. We get 2b = 3.8 so that
b = 1.9 and b2 = 3.61. With Kai 6 miles due North of Jeff, we have that the distance from the
center to the focus is c = 3. Since a2 + b2 = c2, we get a2 = c2 − b2 = 9− 3.61 = 5.39. Kai heard
the Sasquatch call after Jeff, so Kai is farther from Sasquatch than Jeff. Thus Sasquatch must lie

on the southern branch of the hyperbola (y−3)2

3.61 −
(x+5)2

5.39 = 1. Looking at the western branch of the
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hyperbola determined by Jeff and Carl along with the southern branch of the hyperbola determined
by Kai and Jeff, we see that there is exactly one point in common, and this is where Sasquatch
must have been when it called.

x

y

Jeff Carl

Kai

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6

−6
−5

−4
−3

−2

−1

1

2
3

4

5
6

x

y

Jeff Carl

Kai

Sasquatch
−9−8−7−6−5−4−3−2 1 2 3 4 5 6

−6
−5

−4
−3

−2

1

2
3

4

5
6

To determine the coordinates of this point of intersection exactly, we would need techniques for
solving systems of non-linear equations (which we won’t see until Section 8.7), so we use the
calculator4 Doing so, we get Sasquatch is approximately at (−0.9629,−0.8113).

Each of the conic sections we have studied in this chapter result from graphing equations of the
form Ax2 +Cy2 +Dx+Ey+F = 0 for different choices of A, C, D, E, and5 F . While we’ve seen
examples6 demonstrate how to convert an equation from this general form to one of the standard
forms, we close this chapter with some advice about which standard form to choose.7

Strategies for Identifying Conic Sections

Suppose the graph of equation Ax2 +Cy2 +Dx+Ey+F = 0 is a non-degenerate conic section.a

� If just one variable is squared, the graph is a parabola. Put the equation in the form of
Equation 7.2 (if x is squared) or Equation 7.3 (if y is squared).

If both variables are squared, look at the coefficients of x2 and y2, A and B.

� If A = B, the graph is a circle. Put the equation in the form of Equation 7.1.

� If A 6= B but A and B have the same sign, the graph is an ellipse. Put the equation in
the form of Equation 7.4.

� If A and B have the different signs, the graph is a hyperbola. Put the equation in the form
of either Equation 7.6 or Equation 7.7.

aThat is, a parabola, circle, ellipse, or hyperbola – see Section 7.1.

4First solve each hyperbola for y, and choose the correct equation (branch) before proceeding.
5See Section 11.6 to see why we skip B.
6Examples 7.2.3, 7.3.4, 7.4.3, and 7.5.3, in particular.
7We formalize this in Exercise 34.
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7.5.1 Exercises

In Exercises 1 - 8, graph the hyperbola. Find the center, the lines which contain the transverse
and conjugate axes, the vertices, the foci and the equations of the asymptotes.

1.
x2

16
− y2

9
= 1 2.

y2

9
− x2

16
= 1

3.
(x− 2)2

4
− (y + 3)2

9
= 1 4.

(y − 3)2

11
− (x− 1)2

10
= 1

5.
(x+ 4)2

16
− (y − 4)2

1
= 1 6.

(x+ 1)2

9
− (y − 3)2

4
= 1

7.
(y + 2)2

16
− (x− 5)2

20
= 1 8.

(x− 4)2

8
− (y − 2)2

18
= 1

In Exercises 9 - 12, put the equation in standard form. Find the center, the lines which contain
the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

9. 12x2 − 3y2 + 30y − 111 = 0 10. 18y2 − 5x2 + 72y + 30x− 63 = 0

11. 9x2 − 25y2 − 54x− 50y − 169 = 0 12. −6x2 + 5y2 − 24x+ 40y + 26 = 0

In Exercises 13 - 18, find the standard form of the equation of the hyperbola which has the given
properties.

13. Center (3, 7), Vertex (3, 3), Focus (3, 2)

14. Vertex (0, 1), Vertex (8, 1), Focus (−3, 1)

15. Foci (0,±8), Vertices (0,±5).

16. Foci (±5, 0), length of the Conjugate Axis 6

17. Vertices (3, 2), (13, 2); Endpoints of the Conjugate Axis (8, 4), (8, 0)

18. Vertex (−10, 5), Asymptotes y = ±1
2(x− 6) + 5

In Exercises 19 - 28, find the standard form of the equation using the guidelines on page 540 and
then graph the conic section.

19. x2 − 2x− 4y − 11 = 0 20. x2 + y2 − 8x+ 4y + 11 = 0

21. 9x2 + 4y2 − 36x+ 24y + 36 = 0 22. 9x2 − 4y2 − 36x− 24y − 36 = 0
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23. y2 + 8y − 4x+ 16 = 0 24. 4x2 + y2 − 8x+ 4 = 0

25. 4x2 + 9y2 − 8x+ 54y + 49 = 0 26. x2 + y2 − 6x+ 4y + 14 = 0

27. 2x2 + 4y2 + 12x− 8y + 25 = 0 28. 4x2 − 5y2 − 40x− 20y + 160 = 0

29. The graph of a vertical or horizontal hyperbola clearly fails the Vertical Line Test, Theorem
1.1, so the equation of a vertical of horizontal hyperbola does not define y as a function of x.8

However, much like with circles, horizontal parabolas and ellipses, we can split a hyperbola
into pieces, each of which would indeed represent y as a function of x. With the help of your
classmates, use your calculator to graph the hyperbolas given in Exercises 1 - 8 above. How
many pieces do you need for a vertical hyperbola? How many for a horizontal hyperbola?

30. The location of an earthquake’s epicenter − the point on the surface of the Earth directly
above where the earthquake actually occurred − can be determined by a process similar to
how we located Sasquatch in Example 7.5.5. (As we said back in Exercise 75 in Section 6.1,
earthquakes are complicated events and it is not our intent to provide a complete discussion of
the science involved in them. Instead, we refer the interested reader to a course in Geology or
the U.S. Geological Survey’s Earthquake Hazards Program found here.) Our technique works
only for relatively small distances because we need to assume that the Earth is flat in order
to use hyperbolas in the plane.9 The P-waves (“P” stands for Primary) of an earthquake
in Sasquatchia travel at 6 kilometers per second.10 Station A records the waves first. Then
Station B, which is 100 kilometers due north of Station A, records the waves 2 seconds later.
Station C, which is 150 kilometers due west of Station A records the waves 3 seconds after
that (a total of 5 seconds after Station A). Where is the epicenter?

31. The notion of eccentricity introduced for ellipses in Definition 7.5 in Section 7.4 is the same
for hyperbolas in that we can define the eccentricity e of a hyperbola as

e =
distance from the center to a focus

distance from the center to a vertex

(a) With the help of your classmates, explain why e > 1 for any hyperbola.

(b) Find the equation of the hyperbola with vertices (±3, 0) and eccentricity e = 2.

(c) With the help of your classmates, find the eccentricity of each of the hyperbolas in
Exercises 1 - 8. What role does eccentricity play in the shape of the graphs?

32. On page 510 in Section 7.3, we discussed paraboloids of revolution when studying the design
of satellite dishes and parabolic mirrors. In much the same way, ‘natural draft’ cooling towers
are often shaped as hyperboloids of revolution. Each vertical cross section of these towers

8We will see later in the text that the graphs of certain rotated hyperbolas pass the Vertical Line Test.
9Back in the Exercises in Section 1.1 you were asked to research people who believe the world is flat. What did

you discover?
10Depending on the composition of the crust at a specific location, P-waves can travel between 5 kps and 8 kps.

http://earthquake.usgs.gov/
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is a hyperbola. Suppose the a natural draft cooling tower has the cross section below. Suppose
the tower is 450 feet wide at the base, 275 feet wide at the top, and 220 feet at its narrowest
point (which occurs 330 feet above the ground.) Determine the height of the tower to the
nearest foot.

450 ft

220 ft

275 ft

330 ft

33. With the help of your classmates, research the Cassegrain Telescope. It uses the reflective
property of the hyperbola as well as that of the parabola to make an ingenious telescope.

34. With the help of your classmates show that if Ax2 + Cy2 + Dx + Ey + F = 0 determines a
non-degenerate conic11 then

� AC < 0 means that the graph is a hyperbola

� AC = 0 means that the graph is a parabola

� AC > 0 means that the graph is an ellipse or circle

NOTE: This result will be generalized in Theorem 11.11 in Section 11.6.1.

11Recall that this means its graph is either a circle, parabola, ellipse or hyperbola.
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7.5.2 Answers

1.
x2

16
− y2

9
= 1

Center (0, 0)
Transverse axis on y = 0
Conjugate axis on x = 0
Vertices (4, 0), (−4, 0)
Foci (5, 0), (−5, 0)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

2.
y2

9
− x2

16
= 1

Center (0, 0)
Transverse axis on x = 0
Conjugate axis on y = 0
Vertices (0, 3), (0,−3)
Foci (0, 5), (0,−5)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

3.
(x− 2)2

4
− (y + 3)2

9
= 1

Center (2,−3)
Transverse axis on y = −3
Conjugate axis on x = 2
Vertices (0,−3), (4,−3)
Foci (2 +

√
13,−3), (2−

√
13,−3)

Asymptotes y = ±3
2(x− 2)− 3

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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4.
(y − 3)2

11
− (x− 1)2

10
= 1

Center (1, 3)
Transverse axis on x = 1
Conjugate axis on y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Foci (1, 3 +
√

21), (1, 3−
√

21)

Asymptotes y = ±
√

110
10 (x− 1) + 3

x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

8

9

5.
(x+ 4)2

16
− (y − 4)2

1
= 1

Center (−4, 4)
Transverse axis on y = 4
Conjugate axis on x = −4
Vertices (−8, 4), (0, 4)
Foci (−4 +

√
17, 4), (−4−

√
17, 4)

Asymptotes y = ±1
4(x+ 4) + 4

x

y

−11−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1

2

3

4

5

6.
(x+ 1)2

9
− (y − 3)2

4
= 1

Center (−1, 3)
Transverse axis on y = 3
Conjugate axis on x = −1
Vertices (2, 3), (−4, 3)
Foci

(
−1 +

√
13, 3

)
,
(
−1−

√
13, 3

)
Asymptotes y = ±2

3(x+ 1) + 3 x

y

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

7.
(y + 2)2

16
− (x− 5)2

20
= 1

Center (5,−2)
Transverse axis on x = 5
Conjugate axis on y = −2
Vertices (5, 2), (5,−6)
Foci (5, 4) , (5,−8)

Asymptotes y = ±2
√

5
5 (x− 5)− 2

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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8.
(x− 4)2

8
− (y − 2)2

18
= 1

Center (4, 2)
Transverse axis on y = 2
Conjugate axis on x = 4
Vertices

(
4 + 2

√
2, 2
)
,
(
4− 2

√
2, 2
)

Foci
(
4 +
√

26, 2
)
,
(
4−
√

26, 2
)

Asymptotes y = ±3
2(x− 4) + 2 x

y

−2−1 1 2 3 4 5 6 7 8 9 10

-

−2

−1

1

2

3

4

5

6

7

8

9

9.
x2

3
− (y − 5)2

12
= 1

Center (0, 5)
Transverse axis on y = 5
Conjugate axis on x = 0
Vertices (

√
3, 5), (−

√
3, 5)

Foci (
√

15, 5), (−
√

15, 5)
Asymptotes y = ±2x+ 5

10.
(y + 2)2

5
− (x− 3)2

18
= 1

Center (3,−2)
Transverse axis on x = 3
Conjugate axis on y = −2
Vertices (3,−2 +

√
5), (3,−2−

√
5)

Foci (3,−2 +
√

23), (3,−2−
√

23)

Asymptotes y = ±
√

10
6 (x− 3)− 2

11.
(x− 3)2

25
− (y + 1)2

9
= 1

Center (3,−1)
Transverse axis on y = −1
Conjugate axis on x = 3
Vertices (8,−1), (−2,−1)
Foci

(
3 +
√

34,−1
)
,
(
3−
√

34,−1
)

Asymptotes y = ±3
5(x− 3)− 1

12.
(y + 4)2

6
− (x+ 2)2

5
= 1

Center (−2,−4)
Transverse axis on x = −2
Conjugate axis on y = −4
Vertices

(
−2,−4 +

√
6
)
,
(
−2,−4−

√
6
)

Foci
(
−2,−4 +

√
11
)
,
(
−2,−4−

√
11
)

Asymptotes y = ±
√

30
5 (x+ 2)− 4

13.
(y − 7)2

16
− (x− 3)2

9
= 1 14.

(x− 4)2

16
− (y − 1)2

33
= 1

15.
y2

25
− x2

39
= 1 16.

x2

16
− y2

9
= 1

17.
(x− 8)2

25
− (y − 2)2

4
= 1 18.

(x− 6)2

256
− (y − 5)2

64
= 1
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19. (x− 1)2 = 4(y + 3)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

20. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

21.
(x− 2)2

4
+

(y + 3)2

9
= 1

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

22.
(x− 2)2

4
− (y + 3)2

9
= 1

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

23. (y + 4)2 = 4x

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

24.
(x− 1)2

1
+
y2

4
= 0

The graph is the point (1, 0) only.
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25.
(x− 1)2

9
+

(y + 3)2

4
= 1

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

26. (x− 3)2 + (y + 2)2 = −1
There is no graph.

27.
(x+ 3)2

2
+

(y − 1)2

1
= −3

4
There is no graph.

28.
(y + 2)2

16
− (x− 5)2

20
= 1

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

30. By placing Station A at (0,−50) and Station B at (0, 50), the two second time difference

yields the hyperbola y2

36 −
x2

2464 = 1 with foci A and B and center (0, 0). Placing Station C
at (−150,−50) and using foci A and C gives us a center of (−75,−50) and the hyperbola
(x+75)2

225 − (y+50)2

5400 = 1. The point of intersection of these two hyperbolas which is closer to A
than B and closer to A than C is (−57.8444,−9.21336) so that is the epicenter.

31. (b)
x2

9
− y2

27
= 1.

32. The tower may be modeled (approximately)12 by x2

12100 −
(y−330)2

34203 = 1. To find the height, we
plug in x = 137.5 which yields y ≈ 191 or y ≈ 469. Since the top of the tower is above the
narrowest point, we get the tower is approximately 469 feet tall.

12The exact value underneath (y − 330)2 is 52707600
1541

in case you need more precision.



Chapter 8

Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a1x+a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables1 by identifying
a1 = 1, a2 = 0, and c = 5. If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c 6= 0, then we’d have
0 6= 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2 +y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1.

{
2x− y = 1

y = 3
2.

{
3x+ 4y = −2
−3x− y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.

{
2x− 4y = 6
3x− 6y = 9

5.

{
6x+ 3y = 9
4x+ 2y = 12

6.


x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2

+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).
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(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x+ 4y = −2
−3x− y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system{

5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84

+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 −

4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and both sides of the second equation by −2, we are ready to eliminate
the x
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6x− 12y = 18

+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) | 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2x − 4y = 6
for one of the variables, say y = 1

2x −
3
2 . For each value of x, the formula y = 1

2x −
3
2

determines the corresponding y-value of a solution. Since we have no restriction on x, it is
called a free variable. We let x = t, a so-called ‘parameter’, and get y = 1

2 t −
3
2 . Our

set of solutions can then be described as
{(
t, 1

2 t−
3
2

)
| −∞ < t <∞

}
.3 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117

gives us (117, 57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number t, the pair

(
t, 1

2 t−
3
2

)
satisfies both equations.

Substituting x = t and y = 1
2 t −

3
2 into 2x − 4y = 6 gives 2t − 4

(
1
2 t−

3
2

)
= 6. Simplifying,

we get 2t− 2t+ 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3x− 6y = 9, we get 3t− 6

(
1
2 t−

3
2

)
= 9 which reduces to 3t− 3t + 9 = 9, so it

checks out, too. Geometrically, 2x− 4y = 6 and 3x− 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

(
3,− 1

2

) x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x− 6y = 9
(Same line.)

2See Section 1.2 for a review of this.
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) | − ∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18

+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

x− y = 0

+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x+ 3y = 9
4x+ 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x+ y = −2

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called
underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, x1, x2, . . . , xn, is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1,
a2, . . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems – they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

� Interchange the position of any two equations.

� Replace an equation with a nonzero multiple of itself.a

� Replace an equation with itself plus a nonzero multiple of another equation.

aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved the
systems in Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations


x− 1

3y + 1
2z = 1

y − 1
2z = 4

z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(

8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

10You were asked to think about this in Exercise 40 in Section 1.1.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x− 1
3y + 1

2z = 1

y − 1
2z = 4

z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x1, x2, . . .xn is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.

anecessarily an identity or contradiction
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In our previous system, if we make the obvious choices x = x1, y = x2, and z = x3, we see that the
system is in triangular form.12 An example of a more complicated system in triangular form is

x1 − 4x3 + x4 − x6 = 6
x2 + 2x3 = 1

x4 + 3x5 − x6 = 8
x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.


3x− y + z = 3

2x− 4y + 3z = 16
x− y + z = 5

2.


2x+ 3y − z = 1

10x− z = 2
4x− 9y + 2z = 5

3.


3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4
x2 − 3x3 − 2x4 = 0

Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange E1 and E3.


(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 8.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 8.1 twice, we get


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

12If letters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
8.1 and replace E2 with itself times −1

2 .


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2

−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 8.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 8.3 for the variable z.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .


(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1

−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have


(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

Replace E2 with − 1
15
E2

−−−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5

(E2) y − 1
2z = −3

(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4

(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Finally, we eliminate x2 in E3.
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
(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 + 1

3 (3s+ 2t) + 1
3 t = 2

which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) | −∞ < s, t <∞}.13

We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(E1) x+ 3
2y −

1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500 mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+ 0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10
E1 + E2

−−−−−−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Replace E2 with 5
3
E2

−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+ 250
3 . Substituting into E1 gives x+

(
1
2 t+ 250

3

)
+ t = 500 so that x = −3

2 t+ 1250
3 . This

system is consistent, dependent and its solution set is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| − ∞ < t < ∞}.

While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+ 1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+ 250

3 ≥ 0 or t ≥ −500
3 .

The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| 0 ≤ t ≤ 2500

9 }.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t + 250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t + 1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 Exercises

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.

{
x+ 2y = 5

x = 6
2.

{
2y − 3x = 1

y = −3

3.

{
x+2y

4 = −5

3x−y
2 = 1

4.

{
2
3x−

1
5y = 3

1
2x+ 3

4y = 1

5.

{
1
2x−

1
3y = −1

2y − 3x = 6
6.

{
x+ 4y = 6

1
12x+ 1

3y = 1
2

7.

{
3y − 3

2x = −15
2

1
2x− y = 3

2

8.

{
5
6x+ 5

3y = −7
3

−10
3 x−

20
3 y = 10

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

9.

{
−5x+ y = 17
x+ y = 5 10.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

11.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

12.


4x− y + z = 5

2y + 6z = 30
x+ z = 6

13.

{
x+ y + z = −17
y − 3z = 0 14.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

15.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

16.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

17.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

18.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

19.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

20.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2
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21.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

22.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

23.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

24.


2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

25.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

26.


x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

27. Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

28. A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

29. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

30. Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

31. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

32. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

33. Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

34. If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 Answers

1. Consistent independent
Solution

(
6,−1

2

) 2. Consistent independent
Solution

(
−7

3 ,−3
)

3. Consistent independent
Solution

(
−16

7 ,−
62
7

) 4. Consistent independent
Solution

(
49
12 ,−

25
18

)
5. Consistent dependent

Solution
(
t, 3

2 t+ 3
)

for all real numbers t

6. Consistent dependent
Solution (6− 4t, t)
for all real numbers t

7. Inconsistent
No solution

8. Inconsistent
No solution

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

10.


x− 5

3y −
7
3z = −7

3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

11.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

12.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

13.

{
x+ y + z = −17
y − 3z = 0

Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

14.


x− 2y + 3z = 7

y − 11
5 z = −16

5
z = 1

Consistent independent
Solution (2,−1, 1)
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15.


x+ y + 2z = 0

y − 3
2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

16.


x− 1

2y + 1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

17.


x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

18.


x− 2y + 2z = −2

y = 1
2

z = 1

Consistent independent
Solution

(
−3, 1

2 , 1
)

19.


x− 1

2y + 1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1
)

20.


x− 3y − 4z = 3

y + 11
13z = 4

13
0 = 0

Consistent dependent
Solution

(
19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

21.


x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

22.


x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

23.


x− 3

2y + 1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

24.


x1 + 2

3x2 − 16
3 x3 − x4 = 25

3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

25.


x1 − x3 = −2

x2 − 1
2x4 = 0

x3 − 1
2x4 = 1

x4 = 4

Consistent independent
Solution (1, 2, 3, 4)
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26.


x1 − x2 − 5x3 + 3x4 = −1

x2 + 5x3 − 3x4 = 1
2

0 = 1
0 = 0

Inconsistent
No solution

27. If x is the free variable then the solution is (t, 3t,−t+ 5) and if y is the free variable then the
solution is

(
1
3 t, t,−

1
3 t+ 5

)
.

28. 13 chose the basic buffet and 14 chose the deluxe buffet.

29. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

30. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

31. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

32. 4
3 −

1
2 t pounds of Type I, 2

3 −
1
2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4

3 .
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8.2 Systems of Linear Equations: Augmented Matrices

In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If we take a step back and study the process, we see that all of
our moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[ ’ and
‘ ]’, and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of [

3 0 −1
2 −5 10

]
is 2 × 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

A =

[
3 0 −1
2 −5 10

]
then a11 = 3, a12 = 0, a13 = −1, a21 = 2, a22 = −5, and a23 = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

x y z c
(E1)→
(E2)→
(E3)→

 2 3 −1 1
10 0 −1 2
4 −9 2 5


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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.1 To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

� Interchange any two rows.

� Replace a row with a nonzero multiple of itself.a

� Replace a row with itself plus a nonzero multiple of another row.b

aThat is, the row obtained by multiplying each entry in the row by the same nonzero number.
bWhere we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3 3 −1 1 3

2 −4 3 16
1 −1 1 5

 Switch R1 and R3−−−−−−−−−−−→

 1 −1 1 5
2 −4 3 16
3 −1 1 3


Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0 3 1 0 1 6

2 1 −1 0 4
0 1 −3 −2 0

 Replace R1 with 1
3
R1

−−−−−−−−−−−−−→

 1 1
3 0 1

3 2
2 1 −1 0 4
0 1 −3 −2 0


Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

1We shall study the coefficient and constant matrices separately in Section 8.3.
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
(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3 1 3

2 −1
2

1
2

10 0 −1 2
4 −9 2 5

 Replace R2 with −10R1 +R2−−−−−−−−−−−−−−−−−−→
Replace R3 with −4R1 +R3

 1 3
2 −1

2
1
2

0 −15 4 −3
0 −15 4 3


The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation
is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Solution. We first encode the system into an augmented matrix.
3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Encode into the matrix−−−−−−−−−−−−−−→

 3 −1 1 8
1 2 −1 4
2 3 −4 10


Thinking back to Gaussian Elimination at an equations level, our first order of business is to get x
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2. 3 −1 1 8

1 2 −1 4
2 3 −4 10

 Switch R1 and R2−−−−−−−−−−−→

 1 2 −1 4
3 −1 1 8
2 3 −4 10


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Our next step is to eliminate the x’s from E2 and E3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4. 1 2 −1 4

3 −1 1 8
2 3 −4 10

 Replace R2 with −3R1 +R2−−−−−−−−−−−−−−−−−→
Replace R3 with −2R1 +R3

 1 2 −1 4
0 −7 4 −4
0 −1 −2 2


Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.  1 2 −1 4

0 −7 4 −4
0 −1 −2 2

 Replace R2 with − 1
7
R2

−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 −1 −2 2


To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.  1 2 −1 4

0 1 −4
7

4
7

0 −1 −2 2

 Replace R3 with R2 +R3−−−−−−−−−−−−−−−−→

 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7


Finally, we get the leading entry in R3 to be 1. 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7

 Replace R3 with − 7
18
R3

−−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 0 1 −1


Decoding from the matrix gives a system in triangular form 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x+ 2y − z = 4

y − 4
7z = 4

7
z = −1

We get z = −1, y = 4
7z + 4

7 = 4
7(−1) + 4

7 = 0 and x = −2y + z + 4 = −2(0) + (−1) + 4 = 3 for a
final answer of (3, 0,−1). We leave it to the reader to check.

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it. 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Replace R1 with R3 +R1−−−−−−−−−−−−−−−−−→
Replace R2 with 4

7
R3 +R2

 1 2 0 3
0 1 0 0
0 0 1 −1


Finally, we take care of the 2 in R1 above the leading 1 in R2. 1 2 0 3

0 1 0 0
0 0 1 −1

 Replace R1 with −2R2 +R1−−−−−−−−−−−−−−−−−→

 1 0 0 3
0 1 0 0
0 0 1 −1


To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all. 1 0 0 3

0 1 0 0
0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x = 3
y = 0
z = −1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.2 It is
also worth noting that while a matrix has several3 row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elim-
ination to put the augmented matrix into reduced row echelon form.

x2 − 3x1 + x4 = 2
2x1 + 4x3 = 5
4x2 − x4 = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)
x2 − 3x1 + x4 = 2

2x1 + 4x3 = 5
4x2 − x4 = 3

Encode into the matrix−−−−−−−−−−−−−−→

 −3 1 0 1 2
2 0 4 0 5
0 4 0 −1 3


Next, we get a leading 1 in the first column of R1. −3 1 0 1 2

2 0 4 0 5
0 4 0 −1 3

 Replace R1 with − 1
3
R1

−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3


2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1. 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3

 Replace R2 with −2R1 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 2
3 4 2

3
19
3

0 4 0 −1 3


We proceed to get a leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 2
3 4 2

3
19
3

0 4 0 −1 3

 Replace R2 with 3
2
R2

−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 4 0 −1 3


We now zero out the entry below the leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 4 0 −1 3

 Replace R3 with −4R2 +R3−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 −24 −5 −35


Next, it’s time for a leading 1 in R3. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 −24 −5 −35

 Replace R3 with − 1
24
R3

−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 1 5
24

35
24


The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 1 5
24

35
24

 Replace R2 with −6R3 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


Lastly, we get a 0 above the leading 1 of R2. 1 −1

3 0 −1
3 −2

3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Replace R1 with 1
3
R2 +R1

−−−−−−−−−−−−−−−−−→

 1 0 0 − 5
12 − 5

12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


At last, we decode to get 1 0 0 − 5

12 − 5
12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Decode from the matrix−−−−−−−−−−−−−−→


x1 − 5

12x4 = − 5
12

x2 − 1
4x4 = 3

4

x3 + 5
24x4 = 35

24

We have that x4 is free and we assign it the parameter t. We obtain x3 = − 5
24 t+ 35

24 , x2 = 1
4 t+ 3

4 ,
and x1 = 5

12 t−
5
12 . Our solution is

{(
5
12 t−

5
12 ,

1
4 t+ 3

4 ,−
5
24 t+ 35

24 , t
)

: −∞ < t <∞
}

and leave it to
the reader to check.
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Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function passing through the points (−1, 3), (2, 4), (5,−2).

Solution. According to Definition 2.5, a quadratic function has the form f(x) = ax2 +bx+c where
a 6= 0. Our goal is to find a, b and c so that the three given points are on the graph of f . If (−1, 3)
is on the graph of f , then f(−1) = 3, or a(−1)2 + b(−1) + c = 3 which reduces to a − b + c = 3,
an honest-to-goodness linear equation with the variables a, b and c. Since the point (2, 4) is also
on the graph of f , then f(2) = 4 which gives us the equation 4a + 2b + c = 4. Lastly, the point
(5,−2) is on the graph of f gives us 25a+ 5b+ c = −2. Putting these together, we obtain a system
of three linear equations. Encoding this into an augmented matrix produces

a− b+ c = 3
4a+ 2b+ c = 4

25a+ 5b+ c = −2

Encode into the matrix−−−−−−−−−−−−−−→

 1 −1 1 3
4 2 1 4

25 5 1 −2


Using a calculator,4 we find a = − 7

18 , b = 13
18 and c = 37

9 . Hence, the one and only quadratic which
fits the bill is f(x) = − 7

18x
2 + 13

18x+ 37
9 . To verify this analytically, we see that f(−1) = 3, f(2) = 4,

and f(5) = −2. We can use the calculator to check our solution as well by plotting the three data
points and the function f .

The graph of f(x) = − 7
18x

2 + 13
18x+ 37

9
with the points (−1, 3), (2, 4) and (5,−2)

4We’ve tortured you enough already with fractions in this exposition!
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8.2.1 Exercises

In Exercises 1 - 6, state whether the given matrix is in reduced row echelon form, row echelon form
only or in neither of those forms.

1.

[
1 0 3
0 1 3

]
2.

 3 −1 1 3
2 −4 3 16
1 −1 1 5

 3.

 1 1 4 3
0 1 3 6
0 0 0 1



4.

 1 0 0 0
0 1 0 0
0 0 0 1

 5.

 1 0 4 3 0
0 1 3 6 0
0 0 0 0 0

 6.

[
1 1 4 3
0 1 3 6

]

In Exercises 7 - 12, the following matrices are in reduced row echelon form. Determine the solution
of the corresponding system of linear equations or state that the system is inconsistent.

7.

[
1 0 −2
0 1 7

]
8.

 1 0 0 −3
0 1 0 20
0 0 1 19

 9.

 1 0 0 3 4
0 1 0 6 −6
0 0 1 0 2



10.

 1 0 0 3 0
0 1 2 6 0
0 0 0 0 1


11.


1 0 −8 1 7
0 1 4 −3 2
0 0 0 0 0
0 0 0 0 0

 12.

 1 0 9 −3
0 1 −4 20
0 0 0 0



In Exercises 13 - 26, solve the following systems of linear equations using the techniques discussed
in this section. Compare and contrast these techniques with those you used to solve the systems
in the Exercises in Section 8.1.

13.

{
−5x+ y = 17
x+ y = 5 14.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

15.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

16.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

17.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

18.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

19.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

20.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3
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21.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

22.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

23.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

24.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

25.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

26.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

27. It’s time for another meal at our local buffet. This time, 22 diners (5 of whom were children)
feasted for $162.25, before taxes. If the kids buffet is $4.50, the basic buffet is $7.50, and the
deluxe buffet (with crab legs) is $9.25, find out how many diners chose the deluxe buffet.

28. Carl wants to make a party mix consisting of almonds (which cost $7 per pound), cashews
(which cost $5 per pound), and peanuts (which cost $2 per pound.) If he wants to make a 10
pound mix with a budget of $35, what are the possible combinations almonds, cashews, and
peanuts? (You may find it helpful to review Example 8.1.3 in Section 8.1.)

29. Find the quadratic function passing through the points (−2, 1), (1, 4), (3,−2)

30. At 9 PM, the temperature was 60◦F; at midnight, the temperature was 50◦F; and at 6 AM,
the temperature was 70◦F . Use the technique in Example 8.2.3 to fit a quadratic function
to these data with the temperature, T , measured in degrees Fahrenheit, as the dependent
variable, and the number of hours after 9 PM, t, measured in hours, as the independent
variable. What was the coldest temperature of the night? When did it occur?

31. The price for admission into the Stitz-Zeager Sasquatch Museum and Research Station is $15
for adults and $8 for kids 13 years old and younger. When the Zahlenreich family visits the
museum their bill is $38 and when the Nullsatz family visits their bill is $39. One day both
families went together and took an adult babysitter along to watch the kids and the total
admission charge was $92. Later that summer, the adults from both families went without
the kids and the bill was $45. Is that enough information to determine how many adults
and children are in each family? If not, state whether the resulting system is inconsistent or
consistent dependent. In the latter case, give at least two plausible solutions.

32. Use the technique in Example 8.2.3 to find the line between the points (−3, 4) and (6, 1).
How does your answer compare to the slope-intercept form of the line in Equation 2.3?

33. With the help of your classmates, find at least two different row echelon forms for the matrix[
1 2 3
4 12 8

]
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8.2.2 Answers

1. Reduced row echelon form 2. Neither

3. Row echelon form only 4. Reduced row echelon form

5. Reduced row echelon form 6. Row echelon form only

7. (−2, 7) 8. (−3, 20, 19)

9. (−3t+ 4,−6t− 6, 2, t)
for all real numbers t

10. Inconsistent

11. (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

12. (−9t− 3, 4t+ 20, t)
for all real numbers t

13. (−2, 7) 14. (1, 2, 0)

15. (−t+ 5,−3t+ 15, t)
for all real numbers t

16. (2,−1, 1)

17. (1, 3,−2) 18. Inconsistent

19. (1, 3,−2) 20.
(
−3, 1

2 , 1
)

21.
(

1
3 ,

2
3 , 1
)

22.
(

19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

23. Inconsistent 24. (4,−3, 1)

25.
(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t
26. (1, 2, 3, 4)

27. This time, 7 diners chose the deluxe buffet.

28. If t represents the amount (in pounds) of peanuts, then we need 1.5t−7.5 pounds of almonds
and 17.5− 2.5t pounds of cashews. Since we can’t have a negative amount of nuts, 5 ≤ t ≤ 7.

29. f(x) = −4
5x

2 + 1
5x+ 23

5

30. T (t) = 20
27 t

2 − 50
9 t+ 60. Lowest temperature of the evening 595

12 ≈ 49.58◦F at 12:45 AM.
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31. Let x1 and x2 be the numbers of adults and children, respectively, in the Zahlenreich family
and let x3 and x4 be the numbers of adults and children, respectively, in the Nullsatz family.
The system of equations determined by the given information is

15x1 + 8x2 = 38
15x3 + 8x4 = 39

15x1 + 8x2 + 15x3 + 8x4 = 77
15x1 + 15x3 = 45

We subtracted the cost of the babysitter in E3 so the constant is 77, not 92. This system is
consistent dependent and its solution is

(
8
15 t+ 2

5 ,−t+ 4,− 8
15 t+ 13

5 , t
)
. Our variables repre-

sent numbers of adults and children so they must be whole numbers. Running through the
values t = 0, 1, 2, 3, 4 yields only one solution where all four variables are whole numbers;
t = 3 gives us (2, 1, 1, 3). Thus there are 2 adults and 1 child in the Zahlenreichs and 1 adult
and 3 kids in the Nullsatzs.
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8.3 Matrix Arithmetic

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [aij ]m×n, we mean A is an m by n matrix1 and aij is the
entry found in the ith row and jth column. Schematically, we have

j counts columns

from left to right

−−−−−−−−−−−−−−−→

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


y

i counts rows

from top to bottom

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [aij ]m×n and B = [bij ]p×r,
we write A = B provided

1. m = p and n = r

2. aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.2 For example, the two 2× 3 matrices below are, despite appearances, equal.[

0 −2 9
25 117 −3

]
=

[
ln(1) 3

√
−8 e2 ln(3)

1252/3 32 · 13 log(0.001)

]
Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [aij ]m×n and B = [bij ]m×n, we define

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n

As an example, consider the sum below.

1Recall that means A has m rows and n columns.
2Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.6? It is the

authors’ attempt to expose you to the wonderful world of mathematical precision.
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 2 3
4 −1
0 −7

+

 −1 4
−5 −3

8 1

 =

 2 + (−1) 3 + 4
4 + (−5) (−1) + (−3)

0 + 8 (−7) + 1

 =

 1 7
−1 −4

8 −6


It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+B = B +A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative property of matrix addition. To see why this is true in general, we
appeal to the definition of matrix addition. Given A = [aij ]m×n and B = [bij ]m×n,

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n = [bij + aij ]m×n = [bij ]m×n + [aij ]m×n = B +A

where the second equality is the definition of A+ B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B + A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative property of matrix addition also holds, inherited in turn from the associative law
of real number addition. Specifically, for matrices A, B, and C of the same size, (A + B) + C =
A+ (B+C). In other words, when adding more than two matrices, it doesn’t matter how they are
grouped. This means that we can write A+B +C without parentheses and there is no ambiguity
as to what this means.3 These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition

� Commutative Property: For all m× n matrices, A+B = B +A

� Associative Property: For all m× n matrices, (A+B) + C = A+ (B + C)

� Identity Property: If 0m×n is the m × n matrix whose entries are all 0, then 0m×n is
called the m× n additive identity and for all m× n matrices A

A+ 0m×n = 0m×n +A = A

� Inverse Property: For every given m × n matrix A, there is a unique matrix denoted
−A called the additive inverse of A such that

A+ (−A) = (−A) +A = 0m×n

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [aij ]m×n, we are looking
for a matrix B = [bij ]m×n so that A + B = 0m×n. By the definition of matrix addition, we must
have that aij + bij = 0 for all i and j. Solving, we get bij = −aij . Hence, given a matrix A,
its additive inverse, which we call −A, does exist and is unique and, moreover, is given by the
formula: −A = [−aij ]m×n. The long and short of this is: to get the additive inverse of a matrix,

3A technical detail which is sadly lost on most readers.
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take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a− b = a+ (−b); that is, subtraction is defined as ‘adding the opposite (inverse).’ We extend this
concept to matrices. For two matrices A and B of the same size, we define A−B = A+ (−B). At
the level of entries, this amounts to

A−B = A+ (−B) = [aij ]m×n + [−bij ]m×n = [aij + (−bij)]m×n = [aij − bij ]m×n
Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.’ For example, 2 + 2 + 2 = 3 · 2. We know from algebra4 that 3x = x+ x+ x, so it
seems natural that given a matrix A, we define 3A = A+A+A. If A = [aij ]m×n, we have

3A = A+A+A = [aij ]m×n + [aij ]m×n + [aij ]m×n = [aij + aij + aij ]m×n = [3aij ]m×n

In other words, multiplying the matrix in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalara Multiplication: We define the product of a real number and a
matrix to be the matrix obtained by multiplying each of its entries by said real number. More
specifically, if k is a real number and A = [aij ]m×n, we define

kA = k [aij ]m×n = [kaij ]m×n

aThe word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying
a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.’ It has everything to do with
‘scaling’ factors.5 A point P (x, y) in the plane can be represented by its position matrix, P :

(x, y)↔ P =

[
x
y

]
Suppose we take the point (−2, 1) and multiply its position matrix by 3. We have

3P = 3

[
−2

1

]
=

[
3(−2)

3(1)

]
=

[
−6

3

]
which corresponds to the point (−6, 3). We can imagine taking (−2, 1) to (−6, 3) in this fashion as
a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(x, y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
5See Section 1.7.
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As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

� Associative Property: For every m× n matrix A and scalars k and r, (kr)A = k(rA).

� Identity Property: For all m× n matrices A, 1A = A.

� Additive Inverse Property: For all m× n matrices A, −A = (−1)A.

� Distributive Property of Scalar Multiplication over Scalar Addition: For every
m× n matrix A and scalars k and r,

(k + r)A = kA+ rA

� Distributive Property of Scalar Multiplication over Matrix Addition: For all
m× n matrices A and B scalars k,

k(A+B) = kA+ kB

� Zero Product Property: If A is an m× n matrix and k is a scalar, then

kA = 0m×n if and only if k = 0 or A = 0m×n

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A+B) = kA+ kB for a scalar k
and m× n matrices A and B, we start by adding A and B, then multiplying by k and seeing how
that compares with the sum of kA and kB.

k(A+B) = k
(
[aij ]m×n + [bij ]m×n

)
= k [aij + bij ]m×n = [k (aij + bij)]m×n = [kaij + kbij ]m×n

As for kA+ kB, we have

kA+ kB = k [aij ]m×n + k [bij ]m×n = [kaij ]m×n + [kbij ]m×n = [kaij + kbij ]m×n X

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]
using the definitions and properties of matrix arithmetic.
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Solution.

3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]

3A+

{
−
([

2 −1
3 5

]
+ 5A

)}
=

[
−4 2

6 −2

]
+

[ (
1
3

)
(9)

(
1
3

)
(12)(

1
3

)
(−3)

(
1
3

)
(39)

]

3A+ (−1)

([
2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

[
3 4
−1 13

]
3A+

{
(−1)

[
2 −1
3 5

]
+ (−1)(5A)

}
=

[
−1 6

5 11

]
3A+ (−1)

[
2 −1
3 5

]
+ (−1)(5A) =

[
−1 6

5 11

]
3A+

[
(−1)(2) (−1)(−1)
(−1)(3) (−1)(5)

]
+ ((−1)(5))A =

[
−1 6

5 11

]
3A+

[
−2 1
−3 −5

]
+ (−5)A =

[
−1 6

5 11

]
3A+ (−5)A+

[
−2 1
−3 −5

]
=

[
−1 6

5 11

]
(3 + (−5))A+

[
−2 1
−3 −5

]
+

(
−
[
−2 1
−3 −5

])
=

[
−1 6

5 11

]
+

(
−
[
−2 1
−3 −5

])
(−2)A+ 02×2 =

[
−1 6

5 11

]
−
[
−2 1
−3 −5

]
(−2)A =

[
−1− (−2) 6− 1

5− (−3) 11− (−5)

]
(−2)A =

[
1 5
8 16

]
(
−1

2

)
((−2)A) = −1

2

[
1 5
8 16

]
((
−1

2

)
(−2)

)
A =

[ (
−1

2

)
(1)

(
−1

2

)
(5)(

−1
2

)
(8)

(
−1

2

)
(16)

]

1A =

[
−1

2 −5
2

−4 −16
2

]

A =

[
−1

2 −5
2

−4 −8

]
The reader is encouraged to check our answer in the original equation.
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While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a− (2 + 5a) = −4 + 1

3(9).

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply two matrices, they must be of the same size and you find the product by multiplying the
corresponding entries. While this kind of product is used in other areas of mathematics,6 we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


Let R1 denote the first row of A and C1 denote the first column of B. To find the ‘product’ of R1
with C1, denoted R1 ·C1, we first find the product of the first entry in R1 and the first entry in C1.
Next, we add to that the product of the second entry in R1 and the second entry in C1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C1.
Using entry notation, R1·C1 = a11b11 +a12b21 +a13b31 = (2)(3)+(0)(4)+(−1)(5) = 6+0+(−5) = 1.
We can visualize this schematically as follows

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


−−−−−−−−−→
2 0 −1

3
4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3

4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3
4

5

y︸ ︷︷ ︸
a11b11 + a12b21 + a13b31

(2)(3) + (0)(4) + (−1)(5)

To find R2 · C3 where R2 denotes the second row of A and C3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C3, and so forth.
Using entry notation, we have R2·C3 = a21b13+a22b23+a23b33 = (−10)(2)+(3)(−5)+(5)(−2) = −45.
Schematically,

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


6See this article on the Hadamard Product.

http://en.wikipedia.org/wiki/Matrix_multiplication
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−−−−−−−−−→
−10 3 5

2
−5
−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2

−5

−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2
−5

−2

y︸ ︷︷ ︸
a21b13 = (−10)(2) = −20 + a22b23 = (3)(−5) = −15 + a23b33 = (5)(−2) = −10

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [aij ]m×n and B = [bij ]n×r.
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of Ri
and Cj, denoted Ri · Cj is the real number defined by

Ri · Cj = ai1b1j + ai2b2j + . . . ainbnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aij ]m×n and B = [bij ]n×r. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by

AB = [Ri · Cj]m×r

that is

AB =


R1 · C1 R1 · C2 . . . R1 · Cr
R2 · C1 R2 · C2 . . . R2 · Cr

...
...

...
Rm · C1 Rm · C2 . . . Rm · Cr


There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match7 the number of rows of B. In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, Am×n is being
multiplied by a matrix Bn×r. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix Am×n by a matrix Bn×r, the result is
the matrix ABm×r. Returning to our example matrices below, we see that A is a 2× 3 matrix and
B is a 3× 4 matrix. This means that the product matrix AB is defined and will be a 2× 4 matrix.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


7The reader is encouraged to think this through carefully.



8.3 Matrix Arithmetic 585

Using Ri to denote the ith row of A and Cj to denote the jth column of B, we form AB according
to Definition 8.10.

AB =

[
R1 · C1 R1 · C2 R1 · C3 R1 · C4
R2 · C1 R2 · C2 R2 · C3 R2 · C4

]
=

[
1 2 6 −4
7 14 −45 47

]
Note that the product BA is not defined, since B is a 3× 4 matrix while A is a 2× 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.8 In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C be matrices such that
all of the matrix products below are defined and let k be a real number.

� Associative Property of Matrix Multiplication: (AB)C = A(BC)

� Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

� Identity Property: For a natural number k, the k× k identity matrix, denoted Ik, is
defined by Ik = [dij ]k×k where

dij =

{
1, if i = j
0, otherwise

For all m× n matrices, ImA = AIn = A.

� Distributive Property of Matrix Multiplication over Matrix Addition:

A(B ± C) = AB ±AC and (A±B)C = AC ±BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where i = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix Ik mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

[1]

[
1 0
0 1

]  1 0 0
0 1 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


I1 I2 I3 I4

8And may not even have the same dimensions. For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, then
AB is defined and is a 2× 2 matrix while BA is also defined... but is a 3× 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2× 3 matrix A from earlier

A =

[
2 0 −1

−10 3 5

]
In order for the product IkA to be defined, k = 2; similarly, for AIk to be defined, k = 3. We leave
it to the reader to show I2A = A and AI3 = A. In other words,

[
1 0
0 1

] [
2 0 −1

−10 3 5

]
=

[
2 0 −1

−10 3 5

]
and [

2 0 −1
−10 3 5

] 1 0 0
0 1 0
0 0 1

 =

[
2 0 −1

−10 3 5

]

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

1. Find AB for A =

[
−23 −1 17

46 2 −34

]
and B =

 −3 2
1 5
−4 3



2. Find C2 − 5C + 10I2 for C =

[
1 −2
3 4

]
3. Suppose M is a 4× 4 matrix. Use Theorem 8.5 to expand (M − 2I4) (M + 3I4).

Solution.

1. We have AB =

[
−23 −1 17

46 2 −34

] −3 2
1 5
−4 3

 =

[
0 0
0 0

]

2. Just as x2 means x times itself, C2 denotes the matrix C times itself. We get



8.3 Matrix Arithmetic 587

C2 − 5C + 10I2 =

[
1 −2
3 4

]2

− 5

[
1 −2
3 4

]
+ 10

[
1 0
0 1

]
=

[
1 −2
3 4

] [
1 −2
3 4

]
+

[
−5 10
−15 −20

]
+

[
10 0
0 10

]
=

[
−5 −10
15 10

]
+

[
5 10

−15 −10

]
=

[
0 0
0 0

]
3. We expand (M − 2I4) (M + 3I4) with the same pedantic zeal we showed in Example 8.3.1.

The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M − 2I4) (M + 3I4) = (M − 2I4)M + (M − 2I4) (3I4)
= MM − (2I4)M +M (3I4)− (2I4) (3I4)
= M2 − 2 (I4M) + 3 (MI4)− 2 (I4 (3I4))
= M2 − 2M + 3M − 2 (3 (I4I4))
= M2 +M − 6I4

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M − 2I4) (M + 3I4) in
part 3 with the product (x − 2)(x + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P (x, y) in the xy-plane can be represented as a 2 × 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

Example 8.3.3. Let R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]
.

1. Plot P (2,−2), Q(4, 0), S(0, 3), and T (−3,−3) in the plane as well as the points RP , RQ,
RS, and RT . Plot the lines y = x and y = −x as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola x2 − y2 = 4, show that the point RP is on the curve y = 2
x .
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Solution. For P (2,−2), the position matrix is P =

[
2
−2

]
, and

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
2

−2

]

=

[
2
√

2
0

]

We have that R takes (2,−2) to (2
√

2, 0). Similarly, we find (4, 0) is moved to (2
√

2, 2
√

2), (0, 3)

is moved to
(
−3
√

2
2 , 3

√
2

2

)
, and (−3,−3) is moved to (0,−3

√
2). Plotting these in the coordinate

plane along with the lines y = x and y = −x, we see that the matrix R is rotating these points
counterclockwise by 45◦.

P

RP

Q

RQ
S

RS

T

RT

x

y

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

4

For a generic point P (x, y) on the hyperbola x2 − y2 = 4, we have

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
x

y

]

=

[ √
2

2 x−
√

2
2 y√

2
2 x+

√
2

2 y

]

which means R takes (x, y) to
(√

2
2 x−

√
2

2 y,
√

2
2 x+

√
2

2 y
)

. To show that this point is on the curve

y = 2
x , we replace x with

√
2

2 x−
√

2
2 y and y with

√
2

2 x+
√

2
2 y and simplify.


